Search results
Results from the WOW.Com Content Network
In chemical nomenclature, the IUPAC nomenclature of organic chemistry is a method of naming organic chemical compounds as recommended [1] [2] by the International Union of Pure and Applied Chemistry (IUPAC). It is published in the Nomenclature of Organic Chemistry (informally called the Blue Book). [3]
[6] [7] It was the German chemist Karl Gräbe who, in 1869, first used the prefixes ortho-, meta-, para- to denote specific relative locations of the substituents on a disubstituted aromatic ring (namely naphthalene). [8] In 1870, the German chemist Viktor Meyer first applied Gräbe's nomenclature to benzene. [9]
The 5-membered ring compounds containing two heteroatoms, at least one of which is nitrogen, are collectively called the azoles. Thiazoles and isothiazoles contain a sulfur and a nitrogen atom in the ring. Dithioles have two sulfur atoms. A large group of 5-membered ring compounds with three or more heteroatoms also exists.
3 COOH, which is commonly called acetic acid and is also its recommended IUPAC name, but its formal, systematic IUPAC name is ethanoic acid. The IUPAC's rules for naming organic and inorganic compounds are contained in two publications, known as the Blue Book [1] [2] and the Red Book, [3] respectively.
IUPAC states that, "As one of its major activities, IUPAC develops Recommendations to establish unambiguous, uniform, and consistent nomenclature and terminology for specific scientific fields, usually presented as: glossaries of terms for specific chemical disciplines; definitions of terms relating to a group of properties; nomenclature of chemical compounds and their classes; terminology ...
The nomenclature can also be applied to the hydrogen atoms attached to the carbon atoms. A hydrogen atom attached to an α-carbon is called an α-hydrogen, a hydrogen atom on the β-carbon is a β-hydrogen, and so on. Organic molecules with more than one functional group can be a source of confusion.
Moreover, the closing of atoms into rings may lock particular functional group–substituted atoms into place, resulting in stereochemistry and chirality being associated with the compound, including some manifestations that are unique to rings (e.g., configurational isomers); [4] As well, depending on ring size, the three-dimensional shapes of ...
Structure and AFM image of dehydrobenzo[12]annulene, where benzene rings are held together by triple bonds. A triple bond in chemistry is a chemical bond between two atoms involving six bonding electrons instead of the usual two in a covalent single bond. Triple bonds are stronger than the equivalent single bonds or double bonds, with a bond ...