enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Closeness (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Closeness_(mathematics)

    Closeness is a basic concept in topology and related areas in mathematics.Intuitively, we say two sets are close if they are arbitrarily near to each other. The concept can be defined naturally in a metric space where a notion of distance between elements of the space is defined, but it can be generalized to topological spaces where we have no concrete way to measure distances.

  3. Closure (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Closure_(mathematics)

    In mathematics, a subset of a given set is closed under an operation of the larger set if performing that operation on members of the subset always produces a member of that subset. For example, the natural numbers are closed under addition, but not under subtraction: 1 − 2 is not a natural number, although both 1 and 2 are.

  4. Closeness centrality - Wikipedia

    en.wikipedia.org/wiki/Closeness_centrality

    In the classic definition of the closeness centrality, the spread of information is modeled by the use of shortest paths. This model might not be the most realistic for all types of communication scenarios. Thus, related definitions have been discussed to measure closeness, like the random walk closeness centrality introduced by Noh and Rieger ...

  5. Comparison of topologies - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_topologies

    An open (resp. closed) map f : X → Y remains open (resp. closed) if the topology on Y becomes finer or the topology on X coarser. One can also compare topologies using neighborhood bases. Let τ 1 and τ 2 be two topologies on a set X and let B i (x) be a local base for the topology τ i at x ∈ X for i = 1,2.

  6. Topological space - Wikipedia

    en.wikipedia.org/wiki/Topological_space

    In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance.More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms ...

  7. Mathematical structure - Wikipedia

    en.wikipedia.org/wiki/Mathematical_structure

    In mathematics, a structure on a set (or on some sets) refers to providing it (or them) with certain additional features (e.g. an operation, relation, metric, or topology). Τhe additional features are attached or related to the set (or to the sets), so as to provide it (or them) with some additional meaning or significance.

  8. Near sets - Wikipedia

    en.wikipedia.org/wiki/Near_sets

    Near sets have a variety of applications in areas such as topology, pattern detection and classification, abstract algebra, mathematics in computer science, and solving a variety of problems based on human perception that arise in areas such as image analysis, image processing, face recognition, ethology, as well as engineering and science ...

  9. Glossary of general topology - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_general_topology

    Absolutely closed See H-closed Accessible See . Accumulation point See limit point. Alexandrov topology The topology of a space X is an Alexandrov topology (or is finitely generated) if arbitrary intersections of open sets in X are open, or equivalently, if arbitrary unions of closed sets are closed, or, again equivalently, if the open sets are the upper sets of a poset.