Search results
Results from the WOW.Com Content Network
An important ingredient in the calculus on finite weighted graphs is the mimicking of standard differential operators from the continuum setting in the discrete setting of finite weighted graphs. This allows one to translate well-studied tools from mathematics, such as partial differential equations and variational methods, and make them usable ...
When we try to draw a general continuous function, we usually draw the graph of a function which is Lipschitz or otherwise well-behaved. Moreover, the fact that the set of non-differentiability points for a monotone function is measure-zero implies that the rapid oscillations of Weierstrass' function are necessary to ensure that it is nowhere ...
Isoclines are often used as a graphical method of solving ordinary differential equations. In an equation of the form y' = f(x, y), the isoclines are lines in the (x, y) plane obtained by setting f(x, y) equal to a constant. This gives a series of lines (for different constants) along which the solution curves have the same gradient.
Discrete differential calculus is the study of the definition, properties, and applications of the difference quotient of a function. The process of finding the difference quotient is called differentiation. Given a function defined at several points of the real line, the difference quotient at that point is a way of encoding the small-scale (i ...
The product logarithm Lambert W function plotted in the complex plane from −2 − 2i to 2 + 2i The graph of y = W(x) for real x < 6 and y > −4. The upper branch (blue) with y ≥ −1 is the graph of the function W 0 (principal branch), the lower branch (magenta) with y ≤ −1 is the graph of the function W −1. The minimum value of x is ...
John Herschel, Description of a machine for resolving by inspection certain important forms of transcendental equations, 1832. In applied mathematics, a transcendental equation is an equation over the real (or complex) numbers that is not algebraic, that is, if at least one of its sides describes a transcendental function. [1] Examples include:
A line, usually vertical, represents an interval of the domain of the derivative.The critical points (i.e., roots of the derivative , points such that () =) are indicated, and the intervals between the critical points have their signs indicated with arrows: an interval over which the derivative is positive has an arrow pointing in the positive direction along the line (up or right), and an ...
Typically, it applies to first-order equations, though in general characteristic curves can also be found for hyperbolic and parabolic partial differential equation. The method is to reduce a partial differential equation (PDE) to a family of ordinary differential equations (ODE) along which the solution can be integrated from some initial data ...