enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Variance - Wikipedia

    en.wikipedia.org/wiki/Variance

    In probability theory and statistics, variance is the expected value of the squared deviation from the mean of a random variable. The standard deviation (SD) is obtained as the square root of the variance. Variance is a measure of dispersion, meaning it is a measure

  3. Glossary of probability and statistics - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_probability...

    Also confidence coefficient. A number indicating the probability that the confidence interval (range) captures the true population mean. For example, a confidence interval with a 95% confidence level has a 95% chance of capturing the population mean. Technically, this means that, if the experiment were repeated many times, 95% of the CIs computed at this level would contain the true population ...

  4. Statistical dispersion - Wikipedia

    en.wikipedia.org/wiki/Statistical_dispersion

    In statistics, dispersion (also called variability, scatter, or spread) is the extent to which a distribution is stretched or squeezed. [1] Common examples of measures of statistical dispersion are the variance, standard deviation, and interquartile range. For instance, when the variance of data in a set is large, the data is widely scattered.

  5. Coefficient of variation - Wikipedia

    en.wikipedia.org/wiki/Coefficient_of_variation

    This follows from the fact that the variance and mean are independent of the ordering of x. Scale invariance: c v (x) = c v (αx) where α is a real number. [22] Population independence – If {x,x} is the list x appended to itself, then c v ({x,x}) = c v (x). This follows from the fact that the variance and mean both obey this principle.

  6. Fisher information - Wikipedia

    en.wikipedia.org/wiki/Fisher_information

    Because the variance of the estimator of a parameter vector is a matrix, the problem of "minimizing the variance" is complicated. Using statistical theory , statisticians compress the information-matrix using real-valued summary statistics ; being real-valued functions, these "information criteria" can be maximized.

  7. Deviation (statistics) - Wikipedia

    en.wikipedia.org/wiki/Deviation_(statistics)

    Absolute deviation in statistics is a metric that measures the overall difference between individual data points and a central value, typically the mean or median of a dataset. It is determined by taking the absolute value of the difference between each data point and the central value and then averaging these absolute differences. [ 4 ]

  8. Conditional variance - Wikipedia

    en.wikipedia.org/wiki/Conditional_variance

    In words: the variance of Y is the sum of the expected conditional variance of Y given X and the variance of the conditional expectation of Y given X. The first term captures the variation left after "using X to predict Y", while the second term captures the variation due to the mean of the prediction of Y due to the randomness of X.

  9. Variance function - Wikipedia

    en.wikipedia.org/wiki/Variance_function

    The variance function is a measure of heteroscedasticity and plays a large role in many settings of statistical modelling. It is a main ingredient in the generalized linear model framework and a tool used in non-parametric regression , [ 1 ] semiparametric regression [ 1 ] and functional data analysis . [ 2 ]