enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Langley's Adventitious Angles - Wikipedia

    en.wikipedia.org/wiki/Langley's_Adventitious_Angles

    In 2015, an anonymous Japanese woman using the pen name "aerile re" published the first known method (the method of 3 circumcenters) to construct a proof in elementary geometry for a special class of adventitious quadrangles problem. [7] [8] [9] This work solves the first of the three unsolved problems listed by Rigby in his 1978 paper. [5]

  3. Davenport chained rotations - Wikipedia

    en.wikipedia.org/wiki/Davenport_chained_rotations

    The X axis is now at angle α with respect to the x axis. The XYZ system rotates again about the x axis by β. The Z axis is now at angle β with respect to the z axis. The XYZ system rotates a third time about the z axis by γ. In sum, the three elemental rotations occur about z, x and z. Indeed, this sequence is often denoted z-x-z (or 3-1-3 ...

  4. Rotation formalisms in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_formalisms_in...

    The angle θ which appears in the eigenvalue expression corresponds to the angle of the Euler axis and angle representation. The eigenvector corresponding to the eigenvalue of 1 is the accompanying Euler axis, since the axis is the only (nonzero) vector which remains unchanged by left-multiplying (rotating) it with the rotation matrix.

  5. Elimination theory - Wikipedia

    en.wikipedia.org/wiki/Elimination_theory

    This is the case of the theory of polynomials over an algebraically closed field, where elimination theory may be viewed as the theory of the methods to make quantifier elimination algorithmically effective. Quantifier elimination over the reals is another example, which is fundamental in computational algebraic geometry.

  6. Analytic geometry - Wikipedia

    en.wikipedia.org/wiki/Analytic_geometry

    Similarly, the angle that a line makes with the horizontal can be defined by the formula = ⁡ (), where m is the slope of the line. In three dimensions, distance is given by the generalization of the Pythagorean theorem: d = ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 + ( z 2 − z 1 ) 2 , {\displaystyle d={\sqrt {(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2 ...

  7. Computational complexity of mathematical operations - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    The complexity of an elementary function is equivalent to that of its inverse, since all elementary functions are analytic and hence invertible by means of Newton's method. In particular, if either exp {\displaystyle \exp } or log {\displaystyle \log } in the complex domain can be computed with some complexity, then that complexity is ...

  8. Tridiagonal matrix algorithm - Wikipedia

    en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm

    In numerical linear algebra, the tridiagonal matrix algorithm, also known as the Thomas algorithm (named after Llewellyn Thomas), is a simplified form of Gaussian elimination that can be used to solve tridiagonal systems of equations.

  9. Euler's rotation theorem - Wikipedia

    en.wikipedia.org/wiki/Euler's_rotation_theorem

    A rotation represented by an Euler axis and angle. In geometry, Euler's rotation theorem states that, in three-dimensional space, any displacement of a rigid body such that a point on the rigid body remains fixed, is equivalent to a single rotation about some axis that runs through the fixed point.