Search results
Results from the WOW.Com Content Network
The Mattauch isobar rule states that if two adjacent elements on the periodic table have isotopes of the same mass number, at least one of these isobars must be a radionuclide (radioactive). In cases of three isobars of sequential elements where the first and last are stable (this is often the case for even-even nuclides, see above ), branched ...
In thermodynamics, an isobaric process is a type of thermodynamic process in which the pressure of the system stays constant: ΔP = 0. The heat transferred to the system does work, but also changes the internal energy (U) of the system.
Isobar may refer to: Isobar (meteorology), a line connecting points of equal atmospheric pressure reduced to sea level on the maps. Isobaric process, a process taking place at constant pressure; Isobar (nuclide), one of multiple nuclides with the same mass but with different numbers of protons (or, equivalently, different numbers of neutrons).
The field equations of condensed matter physics are remarkably similar to those of high energy particle physics. As a result, much of the theory of particle physics applies to condensed matter physics as well; in particular, there are a selection of field excitations, called quasi-particles, that can be created and explored. These include:
In physics, mirror nuclei are a pair of isobars of two different elements where the number of protons of isobar one (Z 1) equals the number of neutrons of isobar two (N 2) and the number of protons of isotope two (Z 2) equals the number of neutrons in isotope one (N 1); in short: Z 1 = N 2 and Z 2 = N 1.
Nuclides with the same atomic mass number, but different atomic and neutron numbers, are called isobars. [8] The mass of a nucleus is always slightly less than the sum of its proton and neutron masses: the difference in mass represents the mass equivalent to nuclear binding energy, the energy which would need to be added to take the nucleus apart.
In nuclear physics, the semi-empirical mass formula (SEMF) (sometimes also called the Weizsäcker formula, Bethe–Weizsäcker formula, or Bethe–Weizsäcker mass formula to distinguish it from the Bethe–Weizsäcker process) is used to approximate the mass of an atomic nucleus from its number of protons and neutrons.
A subset of these nuclides are also stable with regards to double beta decay or theoretically higher simultaneous beta decay, as they have the lowest energy of all isobars with the same mass number. This set of nuclides is also known as the line of beta stability, a term already in common use in 1965.