Search results
Results from the WOW.Com Content Network
Isobars are atoms of different chemical elements that have the same number of nucleons. Correspondingly, isobars differ in atomic number (or number of protons) but have the same mass number. An example of a series of isobars is 40 S, 40 Cl, 40 Ar, 40 K, and 40 Ca. While the nuclei of these nuclides all contain 40 nucleons, they contain varying ...
In physics, mirror nuclei are a pair of isobars of two different elements where the number of protons of isobar one (Z 1) equals the number of neutrons of isobar two (N 2) and the number of protons of isotope two (Z 2) equals the number of neutrons in isotope one (N 1); in short: Z 1 = N 2 and Z 2 = N 1.
Isobar may refer to: Isobar (meteorology), a line connecting points of equal atmospheric pressure reduced to sea level on the maps. Isobaric process, a process taking place at constant pressure; Isobar (nuclide), one of multiple nuclides with the same mass but with different numbers of protons (or, equivalently, different numbers of neutrons).
Isobars are nuclides having the same mass number (i.e. sum of protons plus neutrons): e.g. carbon-12 and boron-12. Nuclear isomers are different excited states of the same type of nucleus. A transition from one isomer to another is accompanied by emission or absorption of a gamma ray, or the process of internal conversion.
Beta decay generally causes nuclides to decay toward the isobar with the lowest mass (which is often, but not always, the one with highest binding energy) with the same mass number. Those with lower atomic number and higher neutron number than the minimum-mass isobar undergo beta-minus decay , while those with higher atomic number and lower ...
Nuclides that have the same mass number are called isobars. Nuclides that have the same neutron excess are called isodiaphers. [1] Chemical properties are primarily determined by proton number, which determines which chemical element the nuclide is a member of; neutron number has only a slight influence.
Instead, a neutron is converted into a proton or vice versa, producing an adjacent isobar closer to the center of stability (the isobar with the lowest mass excess). For example, significant beta decay branches may exist in nuclides such as 291 Fl and 291 Nh; these nuclides have only a few more neutrons than known nuclides, and might decay via ...
For mass numbers of 147, 151, and 209+, the beta-stable isobar of that mass number has been observed to undergo alpha decay. (In theory, mass number 143 to 155, 160 to 162, and 165+ can also alpha decay.) This gives a total of 101 stable nuclides with odd mass numbers.