enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dixon's Q test - Wikipedia

    en.wikipedia.org/wiki/Dixon's_Q_test

    To apply a Q test for bad data, arrange the data in order of increasing values and calculate Q as defined: = Where gap is the absolute difference between the outlier in question and the closest number to it. If Q > Q table, where Q table is a reference value corresponding to the sample size and confidence level, then reject the questionable ...

  3. Peirce's criterion - Wikipedia

    en.wikipedia.org/wiki/Peirce's_criterion

    First, the statistician may remove the suspected outliers from the data set and then use the arithmetic mean to estimate the location parameter. Second, the statistician may use a robust statistic, such as the median statistic. Peirce's criterion is a statistical procedure for eliminating outliers.

  4. Interquartile range - Wikipedia

    en.wikipedia.org/wiki/Interquartile_range

    It is defined as the difference between the 75th and 25th percentiles of the data. [2] [3] [4] To calculate the IQR, the data set is divided into quartiles, or four rank-ordered even parts via linear interpolation. [1] These quartiles are denoted by Q 1 (also called the lower quartile), Q 2 (the median), and Q 3 (also called the upper quartile).

  5. Grubbs's test - Wikipedia

    en.wikipedia.org/wiki/Grubbs's_test

    H 0: There are no outliers in the data set H a: There is exactly one outlier in the data set. The Grubbs test statistic is defined as = =, …, | ¯ | with ¯ and denoting the sample mean and standard deviation, respectively. The Grubbs test statistic is the largest absolute deviation from the sample mean in units of the sample standard deviation.

  6. Kurtosis - Wikipedia

    en.wikipedia.org/wiki/Kurtosis

    Examples of platykurtic distributions include the continuous and discrete uniform distributions, and the raised cosine distribution. The most platykurtic distribution of all is the Bernoulli distribution with p = 1/2 (for example the number of times one obtains "heads" when flipping a coin once, a coin toss), for which the excess kurtosis is −2.

  7. Outlier - Wikipedia

    en.wikipedia.org/wiki/Outlier

    The modified Thompson Tau test is used to find one outlier at a time (largest value of δ is removed if it is an outlier). Meaning, if a data point is found to be an outlier, it is removed from the data set and the test is applied again with a new average and rejection region. This process is continued until no outliers remain in a data set.

  8. Chauvenet's criterion - Wikipedia

    en.wikipedia.org/wiki/Chauvenet's_criterion

    The idea behind Chauvenet's criterion finds a probability band that reasonably contains all n samples of a data set, centred on the mean of a normal distribution.By doing this, any data point from the n samples that lies outside this probability band can be considered an outlier, removed from the data set, and a new mean and standard deviation based on the remaining values and new sample size ...

  9. Random sample consensus - Wikipedia

    en.wikipedia.org/wiki/Random_sample_consensus

    A simple example is fitting a line in two dimensions to a set of observations. Assuming that this set contains both inliers, i.e., points which approximately can be fitted to a line, and outliers, points which cannot be fitted to this line, a simple least squares method for line fitting will generally produce a line with a bad fit to the data including inliers and outliers.