Search results
Results from the WOW.Com Content Network
The backward acting force of pressure exerted on the front surface is thus larger than the force of pressure acting on the back. Hence, as the resultant of the two forces, there remains a force that counteracts the motion of the plate and that increases with the velocity of the plate. We will call this resultant 'radiation friction' in brief."
Seen another way, the photon can be considered as its own antiparticle (thus an "antiphoton" is simply a normal photon with opposite momentum, equal polarization, and 180° out of phase). The reverse process, pair production , is the dominant mechanism by which high-energy photons such as gamma rays lose energy while passing through matter. [ 32 ]
The photon having non-zero linear momentum, one could imagine that it has a non-vanishing rest mass m 0, which is its mass at zero speed. However, we will now show that this is not the case: m 0 = 0. Since the photon propagates with the speed of light, special relativity is called for. The relativistic expressions for energy and momentum ...
This is sometimes also confusingly called "intensity". Spectral radiosity: J e,ν [nb 3] watt per square metre per hertz W⋅m −2 ⋅Hz −1: M⋅T −2: Radiosity of a surface per unit frequency or wavelength. The latter is commonly measured in W⋅m −2 ⋅nm −1. This is sometimes also confusingly called "spectral intensity". J e,λ [nb 4]
This results from conservation of momentum – the momentum of the reflected photon exiting on the light side must be matched by a reaction on the vane that reflected it. The actual pressure exerted by light is far too small to move these vanes, but can be measured with devices such as the Nichols radiometer. It is in fact possible to make the ...
The electromagnetic force is one of the four fundamental forces of nature. It is the dominant force in the interactions of atoms and molecules. Electromagnetism can be thought of as a combination of electrostatics and magnetism, which are distinct but closely intertwined phenomena. Electromagnetic forces occur between any two charged particles.
The Compton wavelength is a quantum mechanical property of a particle, defined as the wavelength of a photon whose energy is the same as the rest energy of that particle (see mass–energy equivalence). It was introduced by Arthur Compton in 1923 in his explanation of the scattering of photons by electrons (a process known as Compton scattering).
The Planck constant, or Planck's constant, denoted by , [1] is a fundamental physical constant [1] of foundational importance in quantum mechanics: a photon's energy is equal to its frequency multiplied by the Planck constant, and the wavelength of a matter wave equals the Planck constant divided by the associated particle momentum.