enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Table of divisors - Wikipedia

    en.wikipedia.org/wiki/Table_of_divisors

    d is the number of positive divisors of n, including 1 and n itself; σ is the sum of the positive divisors of n, including 1 and n itself; s is the sum of the proper divisors of n, including 1 but not n itself; that is, s(n) = σ(n) − n; a deficient number is greater than the sum of its proper divisors; that is, s(n) < n

  3. Highly composite number - Wikipedia

    en.wikipedia.org/wiki/Highly_composite_number

    the k given prime numbers p i must be precisely the first k prime numbers (2, 3, 5, ...); if not, we could replace one of the given primes by a smaller prime, and thus obtain a smaller number than n with the same number of divisors (for instance 10 = 2 × 5 may be replaced with 6 = 2 × 3; both have four divisors);

  4. Divisor function - Wikipedia

    en.wikipedia.org/wiki/Divisor_function

    Divisor function σ 0 (n) up to n = 250 Sigma function σ 1 (n) up to n = 250 Sum of the squares of divisors, σ 2 (n), up to n = 250 Sum of cubes of divisors, σ 3 (n) up to n = 250. In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer.

  5. Hooley's delta function - Wikipedia

    en.wikipedia.org/wiki/Hooley's_delta_function

    In mathematics, Hooley's delta function (()), also called Erdős--Hooley delta-function, defines the maximum number of divisors of in [,] for all , where is the Euler's number. The first few terms of this sequence are

  6. Greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Greatest_common_divisor

    The above definition is unsuitable for defining gcd(0, 0), since there is no greatest integer n such that 0 × n = 0. However, zero is its own greatest divisor if greatest is understood in the context of the divisibility relation, so gcd(0, 0) is commonly defined as 0.

  7. Divisor - Wikipedia

    en.wikipedia.org/wiki/Divisor

    The divisors of 10 illustrated with Cuisenaire rods: 1, 2, 5, and 10 In mathematics , a divisor of an integer n , {\displaystyle n,} also called a factor of n , {\displaystyle n,} is an integer m {\displaystyle m} that may be multiplied by some integer to produce n . {\displaystyle n.} [ 1 ] In this case, one also says that n {\displaystyle n ...

  8. Maximal and minimal elements - Wikipedia

    en.wikipedia.org/wiki/Maximal_and_minimal_elements

    In abstract algebra, the concept of a maximal common divisor is needed to generalize greatest common divisors to number systems in which the common divisors of a set of elements may have more than one maximal element. In computational geometry, the maxima of a point set are maximal with respect to the partial order of coordinatewise domination.

  9. Abundant number - Wikipedia

    en.wikipedia.org/wiki/Abundant_number

    The abundancy index of n is the ratio σ(n)/n. [7] Distinct numbers n 1, n 2, ... (whether abundant or not) with the same abundancy index are called friendly numbers. The sequence (a k) of least numbers n such that σ(n) > kn, in which a 2 = 12 corresponds to the first abundant number, grows very quickly (sequence A134716 in the OEIS).