Search results
Results from the WOW.Com Content Network
The chain-ladder or development [1] method is a prominent [2] [3] actuarial loss reserving technique. The chain-ladder method is used in both the property and casualty [1] [4] and health insurance [5] fields. Its intent is to estimate incurred but not reported claims and project ultimate loss amounts. [5]
Ultimate loss amounts are necessary for determining an insurance company's carried reserves. They are also useful for determining adequate insurance premiums, when loss experience is used as a rating factor [4] [5] [6] Loss development factors are used in all triangular methods of loss reserving, [7] such as the chain-ladder method.
It is primarily used in the property and casualty [5] [9] and health insurance [2] fields. Generally considered a blend of the chain-ladder and expected claims loss reserving methods, [2] [8] [10] the Bornhuetter–Ferguson method uses both reported or paid losses as well as an a priori expected loss ratio to arrive at an ultimate loss estimate.
The scale at which the Pseudo-Huber loss function transitions from L2 loss for values close to the minimum to L1 loss for extreme values and the steepness at extreme values can be controlled by the value. The Pseudo-Huber loss function ensures that derivatives are continuous for all degrees. It is defined as [3] [4]
In machine learning and mathematical optimization, loss functions for classification are computationally feasible loss functions representing the price paid for inaccuracy of predictions in classification problems (problems of identifying which category a particular observation belongs to). [1]
There, () is the value of the loss function at -th example, and () is the empirical risk. When used to minimize the above function, a standard (or "batch") gradient descent method would perform the following iterations: w := w − η ∇ Q ( w ) = w − η n ∑ i = 1 n ∇ Q i ( w ) . {\displaystyle w:=w-\eta \,\nabla Q(w)=w-{\frac {\eta }{n ...
4.2 Python. 4.3 Java. 4. ... and provides the equations of the ... When doing the calculation by hand it is useful to write down the coefficients in a triangle ...
The coefficients found by Fehlberg for Formula 2 (derivation with his parameter α 2 = 3/8) are given in the table below, using array indexing of base 1 instead of base 0 to be compatible with most computer languages: