Search results
Results from the WOW.Com Content Network
An oscillator is a physical system characterized by periodic motion, such as a pendulum, tuning fork, or vibrating diatomic molecule.Mathematically speaking, the essential feature of an oscillator is that for some coordinate x of the system, a force whose magnitude depends on x will push x away from extreme values and back toward some central value x 0, causing x to oscillate between extremes.
A simple harmonic oscillator is an oscillator that is neither driven nor damped.It consists of a mass m, which experiences a single force F, which pulls the mass in the direction of the point x = 0 and depends only on the position x of the mass and a constant k.
The equation for describing the period: = shows the period of oscillation is independent of the amplitude, though in practice the amplitude should be small. The above equation is also valid in the case when an additional constant force is being applied on the mass, i.e. the additional constant force cannot change the period of oscillation.
The original Heisenberg paper translated (although difficult to read, it contains an example for the anharmonic oscillator): Sources of Quantum mechanics B.L. Van Der Waerden The computations for the hydrogen atom in the Heisenberg representation originally from a paper of Pauli [3]
Defining equation SI unit Dimension Wavefunction: ψ, Ψ To solve from the Schrödinger equation: varies with situation and number of particles Wavefunction probability density: ρ = | | = m −3 [L] −3: Wavefunction probability current: j: Non-relativistic, no external field:
Quantity (common name/s) (Common) symbol/s SI units Dimension Number of wave cycles N: dimensionless dimensionless (Oscillatory) displacement Symbol of any quantity which varies periodically, such as h, x, y (mechanical waves), x, s, η (longitudinal waves) I, V, E, B, H, D (electromagnetism), u, U (luminal waves), ψ, Ψ, Φ (quantum mechanics).
The Stuart–Landau equation in fact describes an entire class of limit-cycle oscillators in the weakly-nonlinear limit. The form of the classical Stuart–Landau equation is much simpler, and perhaps not surprisingly, can be quantized by a Lindblad equation which is also simpler than the Lindblad equation for the van der Pol oscillator.
The Schrödinger equation for a particle in a spherically-symmetric three-dimensional harmonic oscillator can be solved explicitly by separation of variables. This procedure is analogous to the separation performed in the hydrogen-like atom problem, but with a different spherically symmetric potential V ( r ) = 1 2 μ ω 2 r 2 , {\displaystyle ...