Search results
Results from the WOW.Com Content Network
The Holliday-Segar formula is a formula to help approximate water and caloric loss (and therefore the water requirements) using a patient's body weight. [1] Primarily aimed at pediatric patients, the Holliday-Segar formula is the most commonly used estimate of daily caloric requirements. [ 2 ]
Faulhaber's formula is also called Bernoulli's formula. Faulhaber did not know the properties of the coefficients later discovered by Bernoulli. Rather, he knew at least the first 17 cases, as well as the existence of the Faulhaber polynomials for odd powers described below. [2] Jakob Bernoulli's Summae Potestatum, Ars Conjectandi, 1713
In mathematical queueing theory, Little's law (also result, theorem, lemma, or formula [1] [2]) is a theorem by John Little which states that the long-term average number L of customers in a stationary system is equal to the long-term average effective arrival rate λ multiplied by the average time W that a customer spends in the system.
Its complementary cumulative distribution function is a stretched exponential function. The Weibull distribution is related to a number of other probability distributions; in particular, it interpolates between the exponential distribution ( k = 1) and the Rayleigh distribution ( k = 2 and λ = 2 σ {\displaystyle \lambda ={\sqrt {2}}\sigma } ).
The Harris–Benedict equation (also called the Harris-Benedict principle) is a method used to estimate an individual's basal metabolic rate (BMR).. The estimated BMR value may be multiplied by a number that corresponds to the individual's activity level; the resulting number is the approximate daily kilocalorie intake to maintain current body weight.
Because the set of primes is a computably enumerable set, by Matiyasevich's theorem, it can be obtained from a system of Diophantine equations. Jones et al. (1976) found an explicit set of 14 Diophantine equations in 26 variables, such that a given number k + 2 is prime if and only if that system has a solution in nonnegative integers: [7]
The main idea is to express an integral involving an integer parameter (e.g. power) of a function, represented by I n, in terms of an integral that involves a lower value of the parameter (lower power) of that function, for example I n-1 or I n-2. This makes the reduction formula a type of recurrence relation. In other words, the reduction ...
The overall function, , normalizes the result to reside in the range of 0 to 6, which yields the index of the correct day of the week for the date being analyzed. The reason that the formula differs between calendars is that the Julian calendar does not have a separate rule for leap centuries and is offset from the Gregorian calendar by a fixed ...