Search results
Results from the WOW.Com Content Network
An example of slant range is the distance to an aircraft flying at high altitude with respect to that of the radar antenna. The slant range (1) is the hypotenuse of the triangle represented by the altitude of the aircraft and the distance between the radar antenna and the aircraft's ground track (point (3) on the earth directly below the aircraft).
Sensors information (radar, sonar, and transponder data) is provided to the track algorithm using a polar coordinate system, and this is converted to cartesian coordinate system for the track algorithm. The polar to Cartesian conversion uses navigation data for sensors mounted on vehicles, which eliminates sensor position changes caused by ship ...
In aviation, distance measuring equipment (DME) is a radio navigation technology that measures the slant range (distance) between an aircraft and a ground station by timing the propagation delay of radio signals in the frequency band between 960 and 1215 megahertz (MHz). Line-of-visibility between the aircraft and ground station is required.
The angle θ = ε + 90° is used for a mathematical description in a spherical coordinate system. For the approximation of a flat earth – which is usual for airborne radar with short to medium range – the grazing angle and the depression angle can be assumed to be equal γ = ε and the incident angle is β = 180° – θ.
The image of the pole's top will overlay that of some terrain point which is on the same slant range arc but at a shorter horizontal range ("ground-range"). Images of scene surfaces which faced both the illumination and the apparent eyepoint will have geometries that resemble those of an optical scene viewed from that eyepoint.
The range and velocity of a target are detected through pulse delay ranging and the Doppler effect (pulse-Doppler), or through the frequency modulation (FM) ranging and range differentiation. The range resolution is limited by the instantaneous signal bandwidth of the radar sensor in both pulse-Doppler and frequency modulated continuous wave ...
Range imaging is the name for a collection of techniques that are used to produce a 2D image showing the distance to points in a scene from a specific point, normally associated with some type of sensor device. The resulting range image has pixel values that correspond to the distance. If the sensor that is used to produce the range image is ...
Visual sensor networks are most useful in applications involving area surveillance, tracking, and environmental monitoring.Of particular use in surveillance applications is the ability to perform a dense 3D reconstruction of a scene and storing data over a period of time, so that operators can view events as they unfold over any period of time (including the current moment) from any arbitrary ...