enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Linear recurrence with constant coefficients - Wikipedia

    en.wikipedia.org/wiki/Linear_recurrence_with...

    In mathematics (including combinatorics, linear algebra, and dynamical systems), a linear recurrence with constant coefficients [1]: ch. 17 [2]: ch. 10 (also known as a linear recurrence relation or linear difference equation) sets equal to 0 a polynomial that is linear in the various iterates of a variable—that is, in the values of the elements of a sequence.

  3. Fuchsian theory - Wikipedia

    en.wikipedia.org/wiki/Fuchsian_theory

    We have given a homogeneous linear differential equation = of order with coefficients that are expandable as Laurent series with finite principle part. The goal is to obtain a fundamental set of formal Frobenius series solutions relative to any point ξ ∈ C {\displaystyle \xi \in \mathbb {C} } .

  4. Recurrence relation - Wikipedia

    en.wikipedia.org/wiki/Recurrence_relation

    A famous example is the recurrence for the Fibonacci numbers, = + where the order is two and the linear function merely adds the two previous terms. This example is a linear recurrence with constant coefficients , because the coefficients of the linear function (1 and 1) are constants that do not depend on n . {\displaystyle n.}

  5. Descartes' rule of signs - Wikipedia

    en.wikipedia.org/wiki/Descartes'_rule_of_signs

    A linear fractional transformation of the variable makes it possible to use the rule of signs to count roots in any interval. This is the basic idea of Budan's theorem and the Budan–Fourier theorem. Repeated division of an interval in two results in a set of disjoint intervals, each containing one root, and together listing all the roots.

  6. Constant-recursive sequence - Wikipedia

    en.wikipedia.org/wiki/Constant-recursive_sequence

    A sequence obeying the order-d equation also obeys all higher order equations. These identities may be proved in a number of ways, including via the theory of finite differences . [ 9 ] Any sequence of d + 1 {\displaystyle d+1} integer, real, or complex values can be used as initial conditions for a constant-recursive sequence of order d + 1 ...

  7. Linear relation - Wikipedia

    en.wikipedia.org/wiki/Linear_relation

    In linear algebra, a linear relation, or simply relation, between elements of a vector space or a module is a linear equation that has these elements as a solution.. More precisely, if , …, are elements of a (left) module M over a ring R (the case of a vector space over a field is a special case), a relation between , …, is a sequence (, …,) of elements of R such that

  8. Matrix sign function - Wikipedia

    en.wikipedia.org/wiki/Matrix_sign_function

    The matrix sign function is a generalization of the complex signum function ⁡ = {() >, <, to the matrix valued analogue ⁡ ().Although the sign function is not analytic, the matrix function is well defined for all matrices that have no eigenvalue on the imaginary axis, see for example the Jordan-form-based definition (where the derivatives are all zero).

  9. Variation of parameters - Wikipedia

    en.wikipedia.org/wiki/Variation_of_parameters

    In mathematics, variation of parameters, also known as variation of constants, is a general method to solve inhomogeneous linear ordinary differential equations.. For first-order inhomogeneous linear differential equations it is usually possible to find solutions via integrating factors or undetermined coefficients with considerably less effort, although those methods leverage heuristics that ...