Search results
Results from the WOW.Com Content Network
The hidden subgroup problem (HSP) is a topic of research in mathematics and theoretical computer science. The framework captures problems such as factoring , discrete logarithm , graph isomorphism , and the shortest vector problem .
The order-finding problem can also be viewed as a hidden subgroup problem. [3] To see this, consider the group of integers under addition, and for a given a ∈ Z {\displaystyle a\in \mathbb {Z} } such that: a r = 1 {\displaystyle a^{r}=1} , the function
Simon's problem considers access to a function : {,} {,}, as implemented by a black box or an oracle. This function is promised to be either a one-to-one function, or a two-to-one function; if is two-to-one, it is furthermore promised that two inputs and ′ evaluate to the same value if and only if and ′ differ in a fixed set of bits. I.e.,
In the context of group theory, the socle of a group G, denoted soc(G), is the subgroup generated by the minimal normal subgroups of G.It can happen that a group has no minimal non-trivial normal subgroup (that is, every non-trivial normal subgroup properly contains another such subgroup) and in that case the socle is defined to be the subgroup generated by the identity.
Since the normal subgroup is a subgroup of H, its index in G must be n times its index inside H. Its index in G must also correspond to a subgroup of the symmetric group S n, the group of permutations of n objects. So for example if n is 5, the index cannot be 15 even though this divides 5!, because there is no subgroup of order 15 in S 5.
A core-free subgroup is a subgroup whose normal core is the trivial subgroup. Equivalently, it is a subgroup that occurs as the isotropy subgroup of a transitive, faithful group action. The solution for the hidden subgroup problem in the abelian case generalizes to finding the normal core in case of subgroups of arbitrary groups.
Additionally, a family of sets may be defined as a function from a set , known as the index set, to , in which case the sets of the family are indexed by members of . [1] In some contexts, a family of sets may be allowed to contain repeated copies of any given member, [ 2 ] [ 3 ] [ 4 ] and in other contexts it may form a proper class .
The action of a one-parameter group on a set is known as a flow. A smooth vector field on a manifold, at a point, induces a local flow - a one parameter group of local diffeomorphisms, sending points along integral curves of the vector field. The local flow of a vector field is used to define the Lie derivative of tensor fields along the vector ...