enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Triangular matrix - Wikipedia

    en.wikipedia.org/wiki/Triangular_matrix

    The inverse of an upper triangular matrix, if it exists, is upper triangular. The product of an upper triangular matrix and a scalar is upper triangular. Together these facts mean that the upper triangular matrices form a subalgebra of the associative algebra of square matrices for a given size.

  3. Jordan normal form - Wikipedia

    en.wikipedia.org/wiki/Jordan_normal_form

    The Jordan normal form is the most convenient for computation of the matrix functions (though it may be not the best choice for computer computations). Let f(z) be an analytical function of a complex argument. Applying the function on a n×n Jordan block J with eigenvalue λ results in an upper triangular matrix:

  4. Schur decomposition - Wikipedia

    en.wikipedia.org/wiki/Schur_decomposition

    There is also a real Schur decomposition. If A is an n × n square matrix with real entries, then A can be expressed as [4] = where Q is an orthogonal matrix and H is either upper or lower quasi-triangular. A quasi-triangular matrix is a matrix that when expressed as a block matrix of 2 × 2 and 1 × 1 blocks is

  5. Matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Matrix_decomposition

    One can always write = where V is a real orthogonal matrix, is the transpose of V, and S is a block upper triangular matrix called the real Schur form. The blocks on the diagonal of S are of size 1×1 (in which case they represent real eigenvalues) or 2×2 (in which case they are derived from complex conjugate eigenvalue pairs).

  6. Bruhat decomposition - Wikipedia

    en.wikipedia.org/wiki/Bruhat_decomposition

    In mathematics, the Bruhat decomposition (introduced by François Bruhat for classical groups and by Claude Chevalley in general) = of certain algebraic groups = into cells can be regarded as a general expression of the principle of Gauss–Jordan elimination, which generically writes a matrix as a product of an upper triangular and lower triangular matrices—but with exceptional cases.

  7. QR decomposition - Wikipedia

    en.wikipedia.org/wiki/QR_decomposition

    The RQ decomposition transforms a matrix A into the product of an upper triangular matrix R (also known as right-triangular) and an orthogonal matrix Q. The only difference from QR decomposition is the order of these matrices. QR decomposition is Gram–Schmidt orthogonalization of columns of A, started from the first column.

  8. Pascal matrix - Wikipedia

    en.wikipedia.org/wiki/Pascal_matrix

    In matrix theory and combinatorics, a Pascal matrix is a matrix (possibly infinite) containing the binomial coefficients as its elements. It is thus an encoding of Pascal's triangle in matrix form. There are three natural ways to achieve this: as a lower-triangular matrix , an upper-triangular matrix , or a symmetric matrix .

  9. Block LU decomposition - Wikipedia

    en.wikipedia.org/wiki/Block_LU_decomposition

    In linear algebra, a Block LU decomposition is a matrix decomposition of a block matrix into a lower block triangular matrix L and an upper block triangular matrix U. This decomposition is used in numerical analysis to reduce the complexity of the block matrix formula.