Search results
Results from the WOW.Com Content Network
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
In mathematics, the infinite series 1 / 2 + 1 / 4 + 1 / 8 + 1 / 16 + ··· is an elementary example of a geometric series that converges absolutely. The sum of the series is 1. In summation notation, this may be expressed as
The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares.It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, [1] and read on 5 December 1735 in The Saint Petersburg Academy of Sciences. [2]
Ramanujan summation is a technique invented by the mathematician Srinivasa Ramanujan for assigning a value to divergent infinite series.Although the Ramanujan summation of a divergent series is not a sum in the traditional sense, it has properties that make it mathematically useful in the study of divergent infinite series, for which conventional summation is undefined.
For example, the sum of the first n natural numbers can be denoted as ∑ i = 1 n i {\displaystyle \sum _{i=1}^{n}i} For long summations, and summations of variable length (defined with ellipses or Σ notation), it is a common problem to find closed-form expressions for the result.
In reality, we can only use a finite number of these terms as it would take an infinite amount of computational time to make use of all of them. So let's suppose we use only three terms of the series, then e x ≈ 1 + x + x 2 2 ! {\displaystyle e^{x}\approx 1+x+{\frac {x^{2}}{2!}}}
The geometric series 1 / 2 − 1 / 4 + 1 / 8 − 1 / 16 + ⋯ sums to 1 / 3 .. The alternating harmonic series has a finite sum but the harmonic series does not.
The fact that π cot(πz) has simple poles with residue 1 at each integer can be used to compute the sum = (). Consider, for example, f(z) = z −2. Let Γ N be the rectangle that is the boundary of [−N − 1 / 2 , N + 1 / 2 ] 2 with positive orientation, with an integer N. By the residue formula,