enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    Noting that any identity matrix is a rotation matrix, and that matrix multiplication is associative, we may summarize all these properties by saying that the n × n rotation matrices form a group, which for n > 2 is non-abelian, called a special orthogonal group, and denoted by SO(n), SO(n,R), SO n, or SO n (R), the group of n × n rotation ...

  3. Kabsch algorithm - Wikipedia

    en.wikipedia.org/wiki/Kabsch_algorithm

    Let P and Q be two sets, each containing N points in .We want to find the transformation from Q to P.For simplicity, we will consider the three-dimensional case (=).The sets P and Q can each be represented by N × 3 matrices with the first row containing the coordinates of the first point, the second row containing the coordinates of the second point, and so on, as shown in this matrix:

  4. Rotation formalisms in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_formalisms_in...

    The most external matrix rotates the other two, leaving the second rotation matrix over the line of nodes, and the third one in a frame comoving with the body. There are 3 × 3 × 3 = 27 possible combinations of three basic rotations but only 3 × 2 × 2 = 12 of them can be used for representing arbitrary 3D rotations as Euler angles.

  5. Transformation matrix - Wikipedia

    en.wikipedia.org/wiki/Transformation_matrix

    In other words, the matrix of the combined transformation A followed by B is simply the product of the individual matrices. When A is an invertible matrix there is a matrix A −1 that represents a transformation that "undoes" A since its composition with A is the identity matrix. In some practical applications, inversion can be computed using ...

  6. Level-set method - Wikipedia

    en.wikipedia.org/wiki/Level-set_method

    Video of spiral being propagated by level sets (curvature flow) in 2D.Left image shows zero-level solution. Right image shows the level-set scalar field. The Level-set method (LSM) is a conceptual framework for using level sets as a tool for numerical analysis of surfaces and shapes.

  7. Three-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Three-dimensional_space

    The simplest instance is PG(3,2), which has Fano planes as its 2-dimensional subspaces. It is an instance of Galois geometry, a study of projective geometry using finite fields. Thus, for any Galois field GF(q), there is a projective space PG(3,q) of three dimensions.

  8. 3D rotation group - Wikipedia

    en.wikipedia.org/wiki/3D_rotation_group

    The connection between quaternions and rotations, commonly exploited in computer graphics, is explained in quaternions and spatial rotations. The map from S 3 onto SO(3) that identifies antipodal points of S 3 is a surjective homomorphism of Lie groups, with kernel {±1}. Topologically, this map is a two-to-one covering map. (See the plate trick.)

  9. Binary space partitioning - Wikipedia

    en.wikipedia.org/wiki/Binary_space_partitioning

    1980 Fuchs et al. [2] extended Schumacker's idea to the representation of 3D objects in a virtual environment by using planes that lie coincident with polygons to recursively partition the 3D space. This provided a fully automated and algorithmic generation of a hierarchical polygonal data structure known as a Binary Space Partitioning Tree ...