Search results
Results from the WOW.Com Content Network
A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...
As sets can be interpreted as a kind of map (by the indicator function), sets are commonly implemented in the same way as (partial) maps (associative arrays) – in this case in which the value of each key-value pair has the unit type or a sentinel value (like 1) – namely, a self-balancing binary search tree for sorted sets [definition needed ...
The domain P of F consists of an infinite set of binary strings = {,, …}. Each of these strings p i determines a subset S i of Cantor space; the set S i contains all sequences in cantor space that begin with p i. These sets are disjoint because P is a prefix-free set. The sum
To investigate the left distributivity of set subtraction over unions or intersections, consider how the sets involved in (both of) De Morgan's laws are all related: () = = () always holds (the equalities on the left and right are De Morgan's laws) but equality is not guaranteed in general (that is, the containment might be strict).
Russell's paradox concerns the impossibility of a set of sets, whose members are all sets that do not contain themselves. If such a set could exist, it could neither contain itself (because its members all do not contain themselves) nor avoid containing itself (because if it did, it should be included as one of its members). [2]
Cantor's paradox is the name given to a contradiction following from Cantor's theorem together with the assumption that there is a set containing all sets, the universal set. In order to distinguish this paradox from the next one discussed below, it is important to note what this contradiction is.
In set theory and its applications to logic, mathematics, and computer science, set-builder notation is a mathematical notation for describing a set by stating the properties that its members must satisfy. [1] Defining sets by properties is also known as set comprehension, set abstraction or as defining a set's intension.
An operation in set theory that combines the elements of two or more sets to form a single set containing all the elements of the original sets, without duplication. universal universe 1. The universal class, or universe, is the class of all sets. A universal quantifier is the quantifier "for all", usually written ∀ unordered pair