Search results
Results from the WOW.Com Content Network
[1] [2] [3] Introduced by Gilbert N. Lewis in his 1916 article The Atom and the Molecule, a Lewis structure can be drawn for any covalently bonded molecule, as well as coordination compounds. [4] Lewis structures extend the concept of the electron dot diagram by adding lines between atoms to represent shared pairs in a chemical bond.
Molecular orbital diagrams are diagrams of molecular orbital (MO) energy levels, shown as short horizontal lines in the center, flanked by constituent atomic orbital (AO) energy levels for comparison, with the energy levels increasing from the bottom to the top. Lines, often dashed diagonal lines, connect MO levels with their constituent AO levels.
Iodine is the fourth halogen, being a member of group 17 in the periodic table, below fluorine, chlorine, and bromine; since astatine and tennessine are radioactive, iodine is the heaviest stable halogen. Iodine has an electron configuration of [Kr]5s 2 4d 10 5p 5, with the seven electrons in the fifth and outermost shell being its valence ...
Gilbert N. Lewis introduced the concepts of both the electron pair and the covalent bond in a landmark paper he published in 1916. [1] [2] MO diagrams depicting covalent (left) and polar covalent (right) bonding in a diatomic molecule. In both cases a bond is created by the formation of an electron pair.
Date/Time Thumbnail Dimensions User Comment; current: 16:56, 17 April 2006: 800 × 860 (6 KB): File Upload Bot (Pumbaa80) * '''Description:''' Electron shell diagram for Iodine, the 53rd element in the periodic table of elements.
A compound with iodine(V) would be a λ 5 ‑iodane, and a hypothetical iodine(VII)‑containing compound would be a λ 7 ‑iodane. Organyl-iodine ethers, a kind of λ 3 ‑iodane, are sometimes called organic hypoiodites. Alternatively, the hypervalent iodines can be classified using neutral electron counting.
The Wijs solution, iodine monochloride dissolved in acetic acid, is used to determine the iodine value of a substance. It can also be used to prepare iodates, by reaction with a chlorate. Chlorine is released as a byproduct. Iodine monochloride is a Lewis acid that forms 1:1 adducts with Lewis bases such as dimethylacetamide and benzene.
The following exergonic equilibrium gives rise to the triiodide ion: . I 2 + I − ⇌ I − 3. In this reaction, iodide is viewed as a Lewis base, and the iodine is a Lewis acid.The process is analogous to the reaction of S 8 with sodium sulfide (which forms polysulfides) except that the higher polyiodides have branched structures.