enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Discrete cosine transform - Wikipedia

    en.wikipedia.org/wiki/Discrete_cosine_transform

    Its inverse, the type-III DCT, is correspondingly often called simply the inverse DCT or the IDCT. Two related transforms are the discrete sine transform (DST), which is equivalent to a DFT of real and odd functions, and the modified discrete cosine transform (MDCT), which is based on a DCT of overlapping data. Multidimensional DCTs (MD DCTs ...

  3. Multidimensional transform - Wikipedia

    en.wikipedia.org/wiki/Multidimensional_transform

    Two-dimensional DCT frequencies from the JPEG DCT. The DCT is used in JPEG image compression, MJPEG, MPEG, DV, Daala, and Theora video compression. There, the two-dimensional DCT-II of NxN blocks are computed and the results are quantized and entropy coded. In this case, N is typically 8 and the DCT-II formula is applied to each row and column ...

  4. Discrete transform - Wikipedia

    en.wikipedia.org/wiki/Discrete_transform

    In addition to spectral analysis of signals, discrete transforms play important role in data compression, signal detection, digital filtering and correlation analysis. [2] The discrete cosine transform (DCT) is the most widely used transform coding compression algorithm in digital media, followed by the discrete wavelet transform (DWT).

  5. Modified discrete cosine transform - Wikipedia

    en.wikipedia.org/wiki/Modified_discrete_cosine...

    The modified discrete cosine transform (MDCT) is a transform based on the type-IV discrete cosine transform (DCT-IV), with the additional property of being lapped: it is designed to be performed on consecutive blocks of a larger dataset, where subsequent blocks are overlapped so that the last half of one block coincides with the first half of the next block.

  6. Discrete Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Discrete_Fourier_transform

    A useful property of the DFT is that the inverse DFT can be easily expressed in terms of the (forward) DFT, via several well-known "tricks". (For example, in computations, it is often convenient to only implement a fast Fourier transform corresponding to one transform direction and then to get the other transform direction from the first.)

  7. DFT matrix - Wikipedia

    en.wikipedia.org/wiki/DFT_matrix

    The DFT is (or can be, through appropriate selection of scaling) a unitary transform, i.e., one that preserves energy. The appropriate choice of scaling to achieve unitarity is 1 / N {\displaystyle 1/{\sqrt {N}}} , so that the energy in the physical domain will be the same as the energy in the Fourier domain, i.e., to satisfy Parseval's theorem .

  8. Fast Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Fast_Fourier_transform

    The development of fast algorithms for DFT can be traced to Carl Friedrich Gauss's unpublished 1805 work on the orbits of asteroids Pallas and Juno.Gauss wanted to interpolate the orbits from sample observations; [6] [7] his method was very similar to the one that would be published in 1965 by James Cooley and John Tukey, who are generally credited for the invention of the modern generic FFT ...

  9. Finite Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Finite_Fourier_transform

    In mathematics the finite Fourier transform may refer to either . another name for discrete-time Fourier transform (DTFT) of a finite-length series. E.g., F.J.Harris (pp. 52–53) describes the finite Fourier transform as a "continuous periodic function" and the discrete Fourier transform (DFT) as "a set of samples of the finite Fourier transform".