enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Resting potential - Wikipedia

    en.wikipedia.org/wiki/Resting_potential

    The resting membrane potential is not an equilibrium potential as it relies on the constant expenditure of energy (for ionic pumps as mentioned above) for its maintenance. It is a dynamic diffusion potential that takes this mechanism into account—wholly unlike the pillows equilibrium potential, which is true no matter the nature of the system ...

  3. Goldman equation - Wikipedia

    en.wikipedia.org/wiki/Goldman_equation

    The ionic charge determines the sign of the membrane potential contribution. During an action potential, although the membrane potential changes about 100mV, the concentrations of ions inside and outside the cell do not change significantly. They are always very close to their respective concentrations when the membrane is at their resting ...

  4. Membrane potential - Wikipedia

    en.wikipedia.org/wiki/Membrane_potential

    A neuron's resting membrane potential actually changes during the development of an organism. In order for a neuron to eventually adopt its full adult function, its potential must be tightly regulated during development. As an organism progresses through development the resting membrane potential becomes more negative. [23]

  5. Ion channel - Wikipedia

    en.wikipedia.org/wiki/Ion_channel

    Their functions include establishing a resting membrane potential, [1] shaping action potentials and other electrical signals by gating the flow of ions across the cell membrane, controlling the flow of ions across secretory and epithelial cells, and regulating cell volume. Ion channels are present in the membranes of all cells.

  6. Steady state (biochemistry) - Wikipedia

    en.wikipedia.org/wiki/Steady_state_(biochemistry)

    In other words, there is a differential distribution of ions on either side of the cell membrane - that is, the amount of ions on either side is not equal and therefore a charge separation exists. [8] However, ions move across the cell membrane such that a constant resting membrane potential is achieved; this is ionic steady state. [8]

  7. Graded potential - Wikipedia

    en.wikipedia.org/wiki/Graded_potential

    The resting membrane potential is usually around –70 mV. The typical neuron has a threshold potential ranging from –40 mV to –55 mV. Temporal summation occurs when graded potentials within the postsynaptic cell occur so rapidly that they build on each other before the previous ones fade.

  8. Gating (electrophysiology) - Wikipedia

    en.wikipedia.org/wiki/Gating_(electrophysiology)

    Potassium (K +) channels play a large role in setting the resting membrane potential. [9] When the cell membrane depolarizes, the intracellular part of the channel becomes positively charged, which causes the channel's open configuration to become a more stable state than the closed configuration.

  9. Depolarization - Wikipedia

    en.wikipedia.org/wiki/Depolarization

    After an action potential travels down the axon of a neuron, the resting membrane potential of the axon must be restored before another action potential can travel the axon. This is known as the recovery period of the neuron, during which the neuron cannot transmit another action potential.