Search results
Results from the WOW.Com Content Network
It has the formula [(CH 3) 4 C 2 O 2 B] 2; the pinacol groups are sometimes abbreviated as "pin", so the structure is sometimes represented as B 2 pin 2. It is a colourless solid that is soluble in organic solvents. It is a commercially available reagent for making pinacol boronic esters for organic synthesis.
Examples of boronic esters Boronic ester Diol Structural formula Molar mass CAS number Boiling point (°C) Allylboronic acid pinacol ester: pinacol: 168.04: 72824-04-5: 50–53 (5 mmHg) Phenyl boronic acid trimethylene glycol ester: trimethylene glycol: 161.99: 4406-77-3: 106 (2 mm Hg) Diisopropoxymethylborane: isopropanol: 144.02 86595-27-9: ...
Basic heteroaromatic boronic acids (boronic acids that contain a basic nitrogen atom, such as 2-pyridine boronic acid) display additional protodeboronation mechanisms. [4] A key finding shows the speciation of basic heteroaromatic boronic acids to be analogous to that of simple amino acids , with zwitterionic species forming under neutral pH ...
Pinacol is a branched alcohol which finds use in organic syntheses. It is a diol that has hydroxyl groups on vicinal carbon atoms. A white solid that melts just above room temperature, pinacol is notable for undergoing the pinacol rearrangement in the presence of acid and for being the namesake of the pinacol coupling reaction .
Retrieved from "https://en.wikipedia.org/w/index.php?title=Pinacol_boronic_ester&oldid=121008278"
The reaction is named after pinacol (also known as 2,3-dimethyl-2,3-butanediol or tetramethylethylene glycol), which is the product of this reaction when done with acetone as reagent. The reaction is usually a homocoupling but intramolecular cross-coupling reactions are also possible. Pinacol was discovered by Wilhelm Rudolph Fittig in 1859.
Organotrifluoroborates are tolerant of air and moisture [1] and are easy to handle and purify. [2] They are often used in organic synthesis as alternatives to boronic acids (RB(OH) 2 ), boronate esters (RB(OR′) 2 ), and organoboranes (R 3 B), particularly for Suzuki-Miyaura coupling .
The reaction thus provides a more stereospecific and complementary regiochemical alternative to other hydration reactions such as acid-catalyzed addition and the oxymercuration–reduction process. The reaction was first reported by Herbert C. Brown in the late 1950s [2] and it was recognized in his receiving the Nobel Prize in Chemistry in 1979.