Search results
Results from the WOW.Com Content Network
A digit's value is the digit multiplied by the value of its place. Place values are the number of the base raised to the nth power, where n is the number of other digits between a given digit and the radix point.
the value group or valuation group Γ v = v(K ×), a subgroup of Γ (though v is usually surjective so that Γ v = Γ); the valuation ring R v is the set of a ∈ K with v ( a ) ≥ 0, the prime ideal m v is the set of a ∈ K with v ( a ) > 0 (it is in fact a maximal ideal of R v ),
Peak values can be calculated from RMS values from the above formula, which implies V P = V RMS × √ 2, assuming the source is a pure sine wave. Thus the peak value of the mains voltage in the USA is about 120 × √ 2, or about 170 volts. The peak-to-peak voltage, being double this, is about 340 volts.
The peak-to-average power ratio (PAPR) is the peak amplitude squared (giving the peak power) divided by the RMS value squared (giving the average power). [1] It is the square of the crest factor. When expressed in decibels , crest factor and PAPR are equivalent, due to the way decibels are calculated for power ratios vs amplitude ratios .
Peak-to-peak amplitude (abbreviated p–p or PtP or PtoP) is the change between peak (highest amplitude value) and trough (lowest amplitude value, which can be negative). With appropriate circuitry, peak-to-peak amplitudes of electric oscillations can be measured by meters or by viewing the waveform on an oscilloscope .
To empirically estimate the expected value of a random variable, one repeatedly measures observations of the variable and computes the arithmetic mean of the results. If the expected value exists, this procedure estimates the true expected value in an unbiased manner and has the property of minimizing the sum of the squares of the residuals ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The value of a function, given the value(s) assigned to its argument(s), is the quantity assumed by the function for these argument values. [1] [2] For example, if the function f is defined by f (x) = 2 x 2 – 3 x + 1, then assigning the value 3 to its argument x yields the function value 10, since f (3) = 2·3 2 – 3·3 + 1 = 10.