enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Real number - Wikipedia

    en.wikipedia.org/wiki/Real_number

    The long real line pastes together ℵ 1 * + ℵ 1 copies of the real line plus a single point (here ℵ 1 * denotes the reversed ordering of ℵ 1) to create an ordered set that is "locally" identical to the real numbers, but somehow longer; for instance, there is an order-preserving embedding of ℵ 1 in the long real line but not in the real ...

  3. Completeness of the real numbers - Wikipedia

    en.wikipedia.org/wiki/Completeness_of_the_real...

    The real numbers can be defined synthetically as an ordered field satisfying some version of the completeness axiom.Different versions of this axiom are all equivalent in the sense that any ordered field that satisfies one form of completeness satisfies all of them, apart from Cauchy completeness and nested intervals theorem, which are strictly weaker in that there are non Archimedean fields ...

  4. Least-upper-bound property - Wikipedia

    en.wikipedia.org/wiki/Least-upper-bound_property

    The logical status of the property depends on the construction of the real numbers used: in the synthetic approach, the property is usually taken as an axiom for the real numbers (see least upper bound axiom); in a constructive approach, the property must be proved as a theorem, either directly from the construction or as a consequence of some ...

  5. Positive real numbers - Wikipedia

    en.wikipedia.org/wiki/Positive_real_numbers

    Including 0, the set has a semiring structure (0 being the additive identity), known as the probability semiring; taking logarithms (with a choice of base giving a logarithmic unit) gives an isomorphism with the log semiring (with 0 corresponding to ), and its units (the finite numbers, excluding ) correspond to the positive real numbers.

  6. Real analysis - Wikipedia

    en.wikipedia.org/wiki/Real_analysis

    The real numbers have various lattice-theoretic properties that are absent in the complex numbers. Also, the real numbers form an ordered field, in which sums and products of positive numbers are also positive. Moreover, the ordering of the real numbers is total, and the real numbers have the least upper bound property:

  7. Construction of the real numbers - Wikipedia

    en.wikipedia.org/wiki/Construction_of_the_real...

    An axiomatic definition of the real numbers consists of defining them as the elements of a complete ordered field. [2] [3] [4] This means the following: The real numbers form a set, commonly denoted , containing two distinguished elements denoted 0 and 1, and on which are defined two binary operations and one binary relation; the operations are called addition and multiplication of real ...

  8. Monotone convergence theorem - Wikipedia

    en.wikipedia.org/wiki/Monotone_convergence_theorem

    In the extended real numbers every set has a supremum (resp. infimum) which of course may be (resp. ) if the set is unbounded. An important use of the extended reals is that any set of non negative numbers a i ≥ 0 , i ∈ I {\displaystyle a_{i}\geq 0,i\in I} has a well defined summation order independent sum

  9. Convergence tests - Wikipedia

    en.wikipedia.org/wiki/Convergence_tests

    and if L = 1 the test is inconclusive. An alternative formulation of this test is as follows. Let { a n} be a series of real numbers. Then if b > 1 and K (a natural number) exist such that | + | for all n > K then the series {a n} is convergent.