enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. On the Sphere and Cylinder - Wikipedia

    en.wikipedia.org/wiki/On_the_Sphere_and_Cylinder

    The ratio of the volume of a sphere to the volume of its circumscribed cylinder is 2:3, as was determined by Archimedes. The principal formulae derived in On the Sphere and Cylinder are those mentioned above: the surface area of the sphere, the volume of the contained ball, and surface area and volume of the cylinder.

  3. The Method of Mechanical Theorems - Wikipedia

    en.wikipedia.org/wiki/The_Method_of_Mechanical...

    The dependence of the volume of the sphere on the radius is obvious from scaling, although that also was not trivial to make rigorous back then. The method then gives the familiar formula for the volume of a sphere. By scaling the dimensions linearly Archimedes easily extended the volume result to spheroids. [1]: 21-23

  4. Archimedes' principle - Wikipedia

    en.wikipedia.org/wiki/Archimedes'_principle

    Archimedes' principle (also spelled Archimedes's principle) states that the upward buoyant force that is exerted on a body immersed in a fluid, whether fully or partially, is equal to the weight of the fluid that the body displaces. [1] Archimedes' principle is a law of physics fundamental to fluid mechanics. It was formulated by Archimedes of ...

  5. Displacement (fluid) - Wikipedia

    en.wikipedia.org/wiki/Displacement_(fluid)

    Measurement of volume by displacement, (a) before and (b) after an object has been submerged. The amount by which the liquid rises in the cylinder (∆V) is equal to the volume of the object. In fluid mechanics, displacement occurs when an object is largely immersed in a fluid, pushing it out of the way and taking its place. The volume of the ...

  6. Archimedes - Wikipedia

    en.wikipedia.org/wiki/Archimedes

    Also known as Loculus of Archimedes or Archimedes' Box, [87] this is a dissection puzzle similar to a Tangram, and the treatise describing it was found in more complete form in the Archimedes Palimpsest. Archimedes calculates the areas of the 14 pieces which can be assembled to form a square.

  7. Archimedes Palimpsest - Wikipedia

    en.wikipedia.org/wiki/Archimedes_Palimpsest

    Archimedes did not know about differentiation, so he could not calculate any integrals other than those that came from center-of-mass considerations, by symmetry. While he had a notion of linearity, to find the volume of a sphere he had to balance two figures at the same time; he never determined how to change variables or integrate by parts.

  8. On Conoids and Spheroids - Wikipedia

    en.wikipedia.org/wiki/On_Conoids_and_Spheroids

    A page from Archimedes' On Conoids and Spheroids. On Conoids and Spheroids (Ancient Greek: Περὶ κωνοειδέων καὶ σφαιροειδέων) is a surviving work by the Greek mathematician and engineer Archimedes (c. 287 BC – c. 212 BC).

  9. Spherical cap - Wikipedia

    en.wikipedia.org/wiki/Spherical_cap

    An example of a spherical cap in blue (and another in red) In geometry, a spherical cap or spherical dome is a portion of a sphere or of a ball cut off by a plane.It is also a spherical segment of one base, i.e., bounded by a single plane.