Search results
Results from the WOW.Com Content Network
N 2 chart example. [1] The N 2 chart or N 2 diagram (pronounced "en-two" or "en-squared") is a chart or diagram in the shape of a matrix, representing functional or physical interfaces between system elements. It is used to systematically identify, define, tabulate, design, and analyze functional and physical interfaces.
A design structure matrix lists all constituent subsystems/activities and the corresponding information exchange, interactions, and dependency patterns.For example, where the matrix elements represent activities, the matrix details what pieces of information are needed to start a particular activity, and shows where the information generated by that activity leads.
For example, if A is a 3-by-0 matrix and B is a 0-by-3 matrix, then AB is the 3-by-3 zero matrix corresponding to the null map from a 3-dimensional space V to itself, while BA is a 0-by-0 matrix. There is no common notation for empty matrices, but most computer algebra systems allow creating and computing with them.
In other words, the matrix of the combined transformation A followed by B is simply the product of the individual matrices. When A is an invertible matrix there is a matrix A −1 that represents a transformation that "undoes" A since its composition with A is the identity matrix. In some practical applications, inversion can be computed using ...
An "almost" triangular matrix, for example, an upper Hessenberg matrix has zero entries below the first subdiagonal. Hollow matrix: A square matrix whose main diagonal comprises only zero elements. Integer matrix: A matrix whose entries are all integers. Logical matrix: A matrix with all entries either 0 or 1.
For example, a matrix such that all entries of a row (or a column) are 0 does not have an inverse. If it exists, the inverse of a matrix A is denoted A −1, and, thus verifies = =. A matrix that has an inverse is an invertible matrix.
Other examples of Lie groups include special groups of matrices, which are all subgroups of the general linear group, the group of matrices with non-zero determinant. If the matrix entries are real numbers, this will be an -dimensional disconnected manifold.
The Harris matrix is a tool used to depict the temporal succession of archaeological contexts and thus the sequence of depositions and surfaces on a 'dry land' archaeological site, otherwise called a 'stratigraphic sequence'. The matrix reflects the relative position and stratigraphic contacts of