Search results
Results from the WOW.Com Content Network
Pandas (styled as pandas) is a software library written for the Python programming language for data manipulation and analysis.In particular, it offers data structures and operations for manipulating numerical tables and time series.
Descriptive statistics Nonparametric statistics Quality control Survival analysis Data processing Base stat. [Note 2] Normality tests [Note 3] CTA [Note 4] Nonparametric comparison, ANOVA: Cluster analysis Discriminant analysis BDP [Note 5] Ext. [Note 6]
NumPy (pronounced / ˈ n ʌ m p aɪ / NUM-py) is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. [3]
SuperCROSS – comprehensive statistics package with ad-hoc, cross tabulation analysis; Systat – general statistics package; The Unscrambler – free-to-try commercial multivariate analysis software for Windows; Unistat – general statistics package that can also work as Excel add-in; WarpPLS – statistics package used in structural ...
The Import Wizard looks for older installations of Desktop Gold and if found, will import your mail, toolbar icons, usernames, saved passwords and more from. 1. Sign in to Desktop Gold.. 2. Click File in the top menu bar. 3. Click Import Wizard. 4. Click OK to start the import process. 5. Click OK on the confirmation window.
Anaconda is a distribution of the Python and R programming languages for scientific computing (data science, machine learning applications, large-scale data processing, predictive analytics, etc.), that aims to simplify package management and deployment. Anaconda distribution includes data-science packages suitable for Windows, Linux, and macOS ...
scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...
# imports from jax import jit import jax.numpy as jnp # define the cube function def cube (x): return x * x * x # generate data x = jnp. ones ((10000, 10000)) # create the jit version of the cube function jit_cube = jit (cube) # apply the cube and jit_cube functions to the same data for speed comparison cube (x) jit_cube (x)