Search results
Results from the WOW.Com Content Network
The zeta function values listed below include function values at the negative even numbers (s = −2, −4, etc.), for which ζ(s) = 0 and which make up the so-called trivial zeros. The Riemann zeta function article includes a colour plot illustrating how the function varies over a continuous rectangular region of the complex plane.
The Riemann zeta function ζ(z) plotted with domain coloring. [1] The pole at = and two zeros on the critical line.. The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter ζ (), is a mathematical function of a complex variable defined as () = = = + + + for >, and its analytic continuation elsewhere.
In probability theory and statistics, the zeta distribution is a discrete probability distribution. If X is a zeta-distributed random variable with parameter s , then the probability that X takes the positive integer value k is given by the probability mass function
Zeta function of an incidence algebra, a function that maps every interval of a poset to the constant value 1. Despite not resembling a holomorphic function, the special case for the poset of integer divisibility is related as a formal Dirichlet series to the Riemann zeta function. Zeta function of an operator or spectral zeta function
This is a polar plot of the first 20 real values r n of the zeta function along the critical line, ζ(1/2 + it), with t running from 0 to 50. The values of r n in this range are the first 10 non-trivial Riemann zeta function zeros and the first 10 Gram points, each labeled by n.
It is an even function, and real analytic for real values. It follows from the fact that the Riemann–Siegel theta function and the Riemann zeta function are both holomorphic in the critical strip, where the imaginary part of t is between −1/2 and 1/2, that the
The zeta distribution has uses in applied statistics and statistical mechanics, and perhaps may be of interest to number theorists. It is the Zipf distribution for an infinite number of elements. The Hardy distribution , which describes the probabilities of the hole scores for a given golf player.
When all of the are n th roots of unity and the are all nonnegative integers, the values of the multiple polylogarithm are called colored multiple zeta values of level. In particular, when n = 2 {\displaystyle n=2} , they are called Euler sums or alternating multiple zeta values , and when n = 1 {\displaystyle n=1} they are simply called ...