Search results
Results from the WOW.Com Content Network
The multiplicative group of integers modulo n, ... it is the entire group of multiplicative units modulo 561, which consists of 320 residues. Examples
That is, an element u of a ring R is a unit if there exists v in R such that = =, where 1 is the multiplicative identity; the element v is unique for this property and is called the multiplicative inverse of u. [1] [2] The set of units of R forms a group R × under multiplication, called the group of units or unit group of R.
The group scheme of n-th roots of unity is by definition the kernel of the n-power map on the multiplicative group GL(1), considered as a group scheme.That is, for any integer n > 1 we can consider the morphism on the multiplicative group that takes n-th powers, and take an appropriate fiber product of schemes, with the morphism e that serves as the identity.
The multiplicative order of a number a modulo n is the order of a in the multiplicative group whose elements are the residues modulo n of the numbers coprime to n, and whose group operation is multiplication modulo n. This is the group of units of the ring Z n; it has φ(n) elements, φ being Euler's totient function, and is denoted as U(n) or ...
n, and is called the group of units modulo n, or the group of primitive classes modulo n. As explained in the article multiplicative group of integers modulo n, this multiplicative group (× n) is cyclic if and only if n is equal to 2, 4, p k, or 2 p k where p k is a power of an odd prime number.
Euler's totient function is a multiplicative function, meaning that if two numbers m and n are relatively prime, then φ(mn) = φ(m)φ(n). [4] [5] This function gives the order of the multiplicative group of integers modulo n (the group of units of the ring /). [6]
The set of units of a ring is a group under ring multiplication; this group is denoted by R × or R* or U(R). For example, if R is the ring of all square matrices of size n over a field, then R × consists of the set of all invertible matrices of size n, and is called the general linear group.
Let be a group, written multiplicatively, and let be a ring. The group ring of over , which we will denote by [], or simply , is the set of mappings : of finite support (() is nonzero for only finitely many elements ), where the module scalar product of a scalar in and a mapping is defined as the mapping (), and the module group sum of two mappings and is defined as the mapping () + ().