enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Metzler matrix - Wikipedia

    en.wikipedia.org/wiki/Metzler_matrix

    The exponential of a Metzler (or quasipositive) matrix is a nonnegative matrix because of the corresponding property for the exponential of a nonnegative matrix. This is natural, once one observes that the generator matrices of continuous-time Markov chains are always Metzler matrices, and that probability distributions are always non-negative.

  3. Stability theory - Wikipedia

    en.wikipedia.org/wiki/Stability_theory

    In the former case, the orbit is called stable; in the latter case, it is called asymptotically stable and the given orbit is said to be attracting. An equilibrium solution f e {\displaystyle f_{e}} to an autonomous system of first order ordinary differential equations is called:

  4. Lyapunov equation - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_equation

    The Lyapunov equation, named after the Russian mathematician Aleksandr Lyapunov, is a matrix equation used in the stability analysis of linear dynamical systems. [1] [2]In particular, the discrete-time Lyapunov equation (also known as Stein equation) for is

  5. Lyapunov stability - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_stability

    That is, if x belongs to the interior of its stable manifold, it is asymptotically stable if it is both attractive and stable. (There are examples showing that attractivity does not imply asymptotic stability. [9] [10] [11] Such examples are easy to create using homoclinic connections.)

  6. Exponential stability - Wikipedia

    en.wikipedia.org/wiki/Exponential_stability

    An exponentially stable LTI system is one that will not "blow up" (i.e., give an unbounded output) when given a finite input or non-zero initial condition. Moreover, if the system is given a fixed, finite input (i.e., a step ), then any resulting oscillations in the output will decay at an exponential rate , and the output will tend ...

  7. Stable polynomial - Wikipedia

    en.wikipedia.org/wiki/Stable_polynomial

    Stable polynomials arise in control theory and in mathematical theory of differential and difference equations. A linear, time-invariant system (see LTI system theory) is said to be BIBO stable if every bounded input produces bounded output. A linear system is BIBO stable if its characteristic polynomial is stable.

  8. Inside Stability AI’s bad breakup with key investors - AOL

    www.aol.com/finance/inside-stability-ai-bad...

    A Fortune feature takes you inside the whirlwind romance—and bad breakup—between Stability AI, once one of generative AI’s most sought-after startups, and its key investors, Coatue and ...

  9. Numerical stability - Wikipedia

    en.wikipedia.org/wiki/Numerical_stability

    Von Neumann stability analysis is a commonly used procedure for the stability analysis of finite difference schemes as applied to linear partial differential equations. These results do not hold for nonlinear PDEs, where a general, consistent definition of stability is complicated by many properties absent in linear equations.