enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bioenergetic systems - Wikipedia

    en.wikipedia.org/wiki/Bioenergetic_systems

    Relative contribution of ATP production of bioenergetic systems during aerobic exercise at maximum intensity (e.g. sprinting) Aerobic and anaerobic systems usually work concurrently. When describing activity, it is not a question of which energy system is working, but which predominates. [1] [8]

  3. Adenosine triphosphate - Wikipedia

    en.wikipedia.org/wiki/Adenosine_triphosphate

    The energy used by human cells in an adult requires the hydrolysis of 100 to 150 mol/L of ATP daily, which means a human will typically use their body weight worth of ATP over the course of the day. [30] Each equivalent of ATP is recycled 1000–1500 times during a single day (150 / 0.1 = 1500), [29] at approximately 9×10 20 molecules/s. [29]

  4. Carbohydrate catabolism - Wikipedia

    en.wikipedia.org/wiki/Carbohydrate_catabolism

    Lactic acid fermentation is used by human muscle cells as a means of generating ATP during strenuous exercise where oxygen consumption is higher than the supplied oxygen. As this process progresses, the surplus of lactate is brought to the liver , which converts it back to pyruvate.

  5. Purine nucleotide cycle - Wikipedia

    en.wikipedia.org/wiki/Purine_nucleotide_cycle

    During exercise when the ATP reservoir is low (ADP>ATP), the purine nucleotide cycle produces ammonia (NH 3) when it converts AMP into IMP. (With the exception of AMP deaminase deficiency, where ammonia is produced during exercise when adenosine, from AMP, is converted into inosine). During rest (ADP<ATP), ammonia is produced from the ...

  6. Carbohydrate metabolism - Wikipedia

    en.wikipedia.org/wiki/Carbohydrate_metabolism

    During the first phase, it requires the breakdown of two ATP molecules. [1] During the second phase, chemical energy from the intermediates is transferred into ATP and NADH. [ 2 ] The breakdown of one molecule of glucose results in two molecules of pyruvate, which can be further oxidized to access more energy in later processes.

  7. Active transport - Wikipedia

    en.wikipedia.org/wiki/Active_transport

    In secondary active transport, also known as cotransport or coupled transport, energy is used to transport molecules across a membrane; however, in contrast to primary active transport, there is no direct coupling of ATP. Instead, it relies upon the electrochemical potential difference created by pumping ions in/out of the cell. [18]

  8. Metabolism - Wikipedia

    en.wikipedia.org/wiki/Metabolism

    Metabolism (/ m ə ˈ t æ b ə l ɪ z ə m /, from Greek: μεταβολή metabolē, "change") is the set of life-sustaining chemical reactions in organisms.The three main functions of metabolism are: the conversion of the energy in food to energy available to run cellular processes; the conversion of food to building blocks of proteins, lipids, nucleic acids, and some carbohydrates; and the ...

  9. Cellular respiration - Wikipedia

    en.wikipedia.org/wiki/Cellular_respiration

    This potential is then used to drive ATP synthase and produce ATP from ADP and a phosphate group. Biology textbooks often state that 38 ATP molecules can be made per oxidized glucose molecule during cellular respiration (2 from glycolysis, 2 from the Krebs cycle, and about 34 from the electron transport system). [5]