Search results
Results from the WOW.Com Content Network
Momentum space is the set of all momentum vectors p a physical system can have; the momentum vector of a particle corresponds to its motion, with dimension of mass ⋅ length ⋅ time −1. Mathematically, the duality between position and momentum is an example of Pontryagin duality .
If one or more of the particles is moving, the center of mass of the system will generally be moving as well (unless the system is in pure rotation around it). If the total mass of the particles is , and the center of mass is moving at velocity v cm, the momentum of the system is: =.
Euler's second law states that the rate of change of angular momentum L about a point that is fixed in an inertial reference frame (often the center of mass of the body), is equal to the sum of the external moments of force acting on that body M about that point: [1] [4] [5]
It can, however, form a wave packet centered on momentum k (with slight uncertainty), and centered on a certain position (with slight uncertainty). The center position of this wave packet changes as the wave propagates, moving through the crystal at the velocity v given by the formula above. In a real crystal, an electron moves in this way ...
Top: If wavelength λ is unknown, so are momentum p, wave-vector k and energy E (de Broglie relations). As the particle is more localized in position space, Δx is smaller than for Δp x. Bottom: If λ is known, so are p, k, and E. As the particle is more localized in momentum space, Δp is smaller than for Δx.
between the position operator x and momentum operator p x in the x direction of a point particle in one dimension, where [x, p x] = x p x − p x x is the commutator of x and p x , i is the imaginary unit, and ℏ is the reduced Planck constant h/2π, and is the unit operator.
For the case of one particle in one spatial dimension, the definition is: ^ = where ħ is the reduced Planck constant, i the imaginary unit, x is the spatial coordinate, and a partial derivative (denoted by /) is used instead of a total derivative (d/dx) since the wave function is also a function of time. The "hat" indicates an operator.
In the simple case of a single particle moving with a constant velocity (thereby undergoing uniform linear motion), the action is the momentum of the particle times the distance it moves, added up along its path; equivalently, action is the difference between the particle's kinetic energy and its potential energy, times the duration for which ...