Search results
Results from the WOW.Com Content Network
Solving an equation symbolically means that expressions can be used for representing the solutions. For example, the equation x + y = 2x – 1 is solved for the unknown x by the expression x = y + 1, because substituting y + 1 for x in the equation results in (y + 1) + y = 2 (y + 1) – 1, a true statement. It is also possible to take the ...
Transcendental equation. Equation whose side (s) describe a transcendental function. John Herschel, Description of a machine for resolving by inspection certain important forms of transcendental equations, 1832. In applied mathematics, a transcendental equation is an equation over the real (or complex) numbers that is not algebraic, that is, if ...
In addition to sign changes, it is also possible for the method to converge to a point where the limit of the function is zero, even if the function is undefined (or has another value) at that point (for example at x = 0 for the function given by f (x) = abs(x) − x 2 when x ≠ 0 and by f (0) = 5, starting with the interval [-0.5, 3.0]).
In mathematics, the Fibonacci sequence is a sequence in which each number is the sum of the two preceding ones. Numbers that are part of the Fibonacci sequence are known as Fibonacci numbers, commonly denoted Fn . Many writers begin the sequence with 0 and 1, although some authors start it from 1 and 1 [1][2] and some (as did Fibonacci) from 1 ...
Equating coefficients. In mathematics, the method of equating the coefficients is a way of solving a functional equation of two expressions such as polynomials for a number of unknown parameters. It relies on the fact that two expressions are identical precisely when corresponding coefficients are equal for each different type of term.
Extraneous and missing solutions. In mathematics, an extraneous solution (or spurious solution) is one which emerges from the process of solving a problem but is not a valid solution to it. [1] A missing solution is a valid one which is lost during the solution process. Both situations frequently result from performing operations that are not ...
The term responsible for this unbounded growth, called the secular term, is . The Poincaré–Lindstedt method allows for the creation of an approximation that is accurate for all time, as follows. In addition to expressing the solution itself as an asymptotic series, form another series with which to scale time t: {\displaystyle \tau =\omega t,\,}
Finally the product p 1 e k−1 for i = 1 gives contributions to r(i + 1) = r(2) like for other values i < k, but the remaining contributions produce k times each monomial of e k, since any one of the variables may come from the factor p 1; thus