Search results
Results from the WOW.Com Content Network
t. e. In probability theory, conditional probability is a measure of the probability of an event occurring, given that another event (by assumption, presumption, assertion or evidence) is already known to have occurred. [1] This particular method relies on event A occurring with some sort of relationship with another event B.
Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes.Two events are independent, statistically independent, or stochastically independent [1] if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds.
In probability theory, the chain rule[1] (also called the general product rule[2][3]) describes how to calculate the probability of the intersection of, not necessarily independent, events or the joint distribution of random variables respectively, using conditional probabilities. This rule allows one to express a joint probability in terms of ...
A return period, also known as a recurrence interval or repeat interval, is an average time or an estimated average time between events such as earthquakes, floods, [1] landslides, [2] or river discharge flows to occur. It is a statistical measurement typically based on historic data over an extended period, and is used usually for risk analysis.
In probability theory and statistics, the Poisson distribution (/ ˈ p w ɑː s ɒ n /; French pronunciation:) is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time if these events occur with a known constant mean rate and independently of the time since the last event. [1]
Conditional dependence. In probability theory, conditional dependence is a relationship between two or more events that are dependent when a third event occurs. [1][2] For example, if and are two events that individually increase the probability of a third event and do not directly affect each other, then initially (when it has not been ...
This follows from the definition of independence in probability: the probabilities of two independent events happening, given a model, is the product of the probabilities. This is particularly important when the events are from independent and identically distributed random variables , such as independent observations or sampling with replacement .
The law of total probability is [1] a theorem that states, in its discrete case, if is a finite or countably infinite set of mutually exclusive and collectively exhaustive events, then for any event. or, alternatively, [1] {\displaystyle P (A)=\sum _ {n}P (A\mid B_ {n})P (B_ {n}),} where, for any , if , then these terms are simply omitted from ...