Search results
Results from the WOW.Com Content Network
The Rhind Mathematical Papyrus, [1][2] an ancient Egyptian mathematical work, includes a mathematical table for converting rational numbers of the form 2/ n into Egyptian fractions (sums of distinct unit fractions), the form the Egyptians used to write fractional numbers. The text describes the representation of 50 rational numbers.
where f (2k−1) is the (2k − 1)th derivative of f and B 2k is the (2k)th Bernoulli number: B 2 = 1 / 6 , B 4 = − + 1 / 30 , and so on. Setting f ( x ) = x , the first derivative of f is 1, and every other term vanishes, so [ 15 ]
Slices of approximately 1/8 of a pizza. A unit fraction is a positive fraction with one as its numerator, 1/ n.It is the multiplicative inverse (reciprocal) of the denominator of the fraction, which must be a positive natural number.
One half is the irreducible fraction resulting from dividing one (1) by two (2), or the fraction resulting from dividing any number by its double. It often appears in mathematical equations, recipes, measurements, etc.
In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is, a fraction such that the numerator and the denominator are both polynomials) is an operation that consists of expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions with a simpler denominator. [1]
Use the integer part, 2, as an approximation for the reciprocal to obtain a second approximation of 4 + 1 / 2 = 4.5. Now, 93 / 43 = 2 + 7 / 43 ; the remaining fractional part, 7 / 43 , is the reciprocal of 43 / 7 , and 43 / 7 is around 6.1429.
A simple fraction (also known as a common fraction or vulgar fraction, where vulgar is Latin for "common") is a rational number written as a / b or , where a and b are both integers. [9] As with other fractions, the denominator (b) cannot be zero. Examples include 1 2 , − 8 5 , −8 5 , and 8 −5 .
This sequence of approximations begins 1 / 1 , 3 / 2 , 7 / 5 , 17 / 12 , and 41 / 29 , so the sequence of Pell numbers begins with 1, 2, 5, 12, and 29. The numerators of the same sequence of approximations are half the companion Pell numbers or Pell–Lucas numbers ; these numbers form a second infinite ...