enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Time-invariant system - Wikipedia

    en.wikipedia.org/wiki/Time-invariant_system

    If a system is time-invariant then the system block commutes with an arbitrary delay. If a time-invariant system is also linear, it is the subject of linear time-invariant theory (linear time-invariant) with direct applications in NMR spectroscopy, seismology, circuits, signal processing, control theory, and other technical areas.

  3. Linear time-invariant system - Wikipedia

    en.wikipedia.org/wiki/Linear_time-invariant_system

    The defining properties of any LTI system are linearity and time invariance.. Linearity means that the relationship between the input () and the output (), both being regarded as functions, is a linear mapping: If is a constant then the system output to () is (); if ′ is a further input with system output ′ then the output of the system to () + ′ is () + ′ (), this applying for all ...

  4. Transfer function - Wikipedia

    en.wikipedia.org/wiki/Transfer_function

    The term is often used exclusively to refer to linear time-invariant (LTI) systems. Most real systems have non-linear input-output characteristics, but many systems operated within nominal parameters (not over-driven) have behavior close enough to linear that LTI system theory is an acceptable representation of their input-output behavior.

  5. Minimum phase - Wikipedia

    en.wikipedia.org/wiki/Minimum_phase

    In control theory and signal processing, a linear, time-invariant system is said to be minimum-phase if the system and its inverse are causal and stable. [1] [2]The most general causal LTI transfer function can be uniquely factored into a series of an all-pass and a minimum phase system.

  6. Controllability Gramian - Wikipedia

    en.wikipedia.org/wiki/Controllability_Gramian

    Linear Time Invariant (LTI) Systems are those systems in which the parameters , , and are invariant with respect to time. One can observe if the LTI system is or is not controllable simply by looking at the pair ( A , B ) {\displaystyle ({\boldsymbol {A}},{\boldsymbol {B}})} .

  7. Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Fourier_transform

    In linear time invariant (LTI) system theory, it is common to interpret g(x) as the impulse response of an LTI system with input f(x) and output h(x), since substituting the unit impulse for f(x) yields h(x) = g(x). In this case, ĝ(ξ) represents the frequency response of the system.

  8. Linear filter - Wikipedia

    en.wikipedia.org/wiki/Linear_filter

    Linear filters process time-varying input signals to produce output signals, subject to the constraint of linearity.In most cases these linear filters are also time invariant (or shift invariant) in which case they can be analyzed exactly using LTI ("linear time-invariant") system theory revealing their transfer functions in the frequency domain and their impulse responses in the time domain.

  9. Infinite impulse response - Wikipedia

    en.wikipedia.org/wiki/Infinite_impulse_response

    Systems with this property are known as IIR systems or IIR filters. In practice, the impulse response, even of IIR systems, usually approaches zero and can be neglected past a certain point. However the physical systems which give rise to IIR or FIR responses are dissimilar, and therein lies the importance of the distinction.