Search results
Results from the WOW.Com Content Network
Cumulative distribution function for the exponential distribution Cumulative distribution function for the normal distribution. In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable, or just distribution function of , evaluated at , is the probability that will take a value less than or equal to .
In statistics, an empirical distribution function (commonly also called an empirical cumulative distribution function, eCDF) is the distribution function associated with the empirical measure of a sample. [1] This cumulative distribution function is a step function that jumps up by 1/n at each of the n data points. Its value at any specified ...
The Gompertz distribution is a flexible distribution that can be skewed to the right and to the left. Its hazard function = is a convex function of (;,).The model can be fitted into the innovation-imitation paradigm with = as the coefficient of innovation and as the coefficient of imitation.
"A Short Preview of Free Statistical Software Packages for Teaching Statistics to Industrial Technology Majors" (PDF). Journal of Industrial Technology. 21 (2). Archived from the original (PDF) on October 25, 2005.
Critical values of the studentized range distribution are used in Tukey's range test. [3]The studentized range is used to calculate significance levels for results obtained by data mining, where one selectively seeks extreme differences in sample data, rather than only sampling randomly.
The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.
The cumulative distribution function (shown as F(x)) gives the p values as a function of the q values. The quantile function does the opposite: it gives the q values as a function of the p values. Note that the portion of F(x) in red is a horizontal line segment.
In the field of statistical physics, a non-formal reformulation of the relation above between the derivative of the cumulative distribution function and the probability density function is generally used as the definition of the probability density function. This alternate definition is the following: