Search results
Results from the WOW.Com Content Network
List of letters used in mathematics and science; Glossary of mathematical symbols; List of mathematical uses of Latin letters; Greek letters used in mathematics, science, and engineering; Physical constant; Physical quantity; International System of Units; ISO 31
SI symbol Name Value SI symbol Name 10 −1 M dM decimolar 10 1 M daM decamolar 10 −2 M cM centimolar 10 2 M hM hectomolar 10 −3 M mM millimolar 10 3 M kM kilomolar 10 −6 M μM micromolar 10 6 M MM megamolar 10 −9 M nM nanomolar 10 9 M GM gigamolar 10 −12 M pM picomolar 10 12 M TM teramolar 10 −15 M fM femtomolar 10 15 M PM petamolar
The table usually lists only one name and symbol that is most commonly used. The final column lists some special properties that some of the quantities have, such as their scaling behavior (i.e. whether the quantity is intensive or extensive ), their transformation properties (i.e. whether the quantity is a scalar , vector , matrix or tensor ...
Energy is defined via work, so the SI unit of energy is the same as the unit of work – the joule (J), named in honour of James Prescott Joule [1] and his experiments on the mechanical equivalent of heat. In slightly more fundamental terms, 1 joule is equal to 1 newton metre and, in terms of SI base units
Molar concentration or molarity is most commonly expressed in units of moles of solute per litre of solution. [1] For use in broader applications, it is defined as amount of substance of solute per unit volume of solution, or per unit volume available to the species, represented by lowercase : [2]
"The candela, symbol cd, is the SI unit of luminous intensity in a given direction. It is defined by taking the fixed numerical value of the luminous efficacy of monochromatic radiation of frequency 540 × 10 12 Hz , K cd , to be 683 when expressed in the unit lm W −1 , which is equal to cd sr W −1 , or cd sr kg −1 m −2 s 3 , where the ...
Mass–energy equivalence states that all objects having mass, or massive objects, have a corresponding intrinsic energy, even when they are stationary.In the rest frame of an object, where by definition it is motionless and so has no momentum, the mass and energy are equal or they differ only by a constant factor, the speed of light squared (c 2).
Symbol [1] Name of quantity Unit name Symbol Base units E energy: joule: J = C⋅V = W⋅s kg⋅m 2 ⋅s −2: Q electric charge: coulomb: C A⋅s I electric current: ampere: A = C/s = W/V A J electric current density: ampere per square metre A/m 2: A⋅m −2: U, ΔV; Δϕ; E, ξ potential difference; voltage; electromotive force: volt: V = J ...