Search results
Results from the WOW.Com Content Network
In thermal equilibrium, each phase (i.e. liquid, solid etc.) of physical matter comes to an end at a transitional point, or spatial interface, called a phase boundary, due to the immiscibility of the matter with the matter on the other side of the boundary. This immiscibility is due to at least one difference between the two substances ...
The solid–liquid phase boundary can only end in a critical point if the solid and liquid phases have the same symmetry group. [5] For most substances, the solid–liquid phase boundary (or fusion curve) in the phase diagram has a positive slope so that the melting point increases with pressure.
Carbon dioxide pressure-temperature phase diagram showing the triple point and critical point of carbon dioxide. In the phase diagram to the right, the boundary curve between the liquid and gas regions maps the constraint between temperature and pressure when the single-component system has separated into liquid and gas phases at equilibrium ...
The commonly known phases solid, liquid and vapor are separated by phase boundaries, i.e. pressure–temperature combinations where two phases can coexist. At the triple point, all three phases can coexist. However, the liquid–vapor boundary terminates in an endpoint at some critical temperature T c and critical pressure p c. This is the ...
In thermodynamics, the binodal, also known as the coexistence curve or binodal curve, denotes the condition at which two distinct phases may coexist. Equivalently, it is the boundary between the set of conditions in which it is thermodynamically favorable for the system to be fully mixed and the set of conditions in which it is ...
The upper curve is the line of liquidus, and the lower curve is the line of solidus. In chemistry , materials science , and physics , the liquidus temperature specifies the temperature above which a material is completely liquid, [ 2 ] and the maximum temperature at which crystals can co-exist with the melt in thermodynamic equilibrium .
A miscibility gap between isostructural phases may be described as the solvus, a term also used to describe the boundary on a phase diagram between a miscibility gap and other phases. [2] Thermodynamically, miscibility gaps indicate a maximum (e.g. of Gibbs energy) in the composition range. [3] [4]
A common form of spontaneous phase separation is termed spinodal decomposition; it is described by the Cahn–Hilliard equation. Regions of a phase diagram in which phase separation occurs are called miscibility gaps. There are two boundary curves of note: the binodal coexistence curve and the spinodal curve. On one side of the binodal ...