Ad
related to: matlab modular division- Helping Others Like You
We've Logged Over 6 Million Lessons
Read What Others Have to Say.
- Expert Tutors
Choose From 80,000 Vetted Tutors
w/ Millions Of Ratings and Reviews
- Tutors Near You
Expert Tutors, Private Sessions.
Tutors From $25/hr. Try Today.
- Our Powerful Online Tool
Interactive Features & Video Chat
Make Learning Easy. Try It Free.
- Helping Others Like You
Search results
Results from the WOW.Com Content Network
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation.. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor.
In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book Disquisitiones Arithmeticae , published in 1801.
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.
A residue numeral system (RNS) is a numeral system representing integers by their values modulo several pairwise coprime integers called the moduli. This representation is allowed by the Chinese remainder theorem, which asserts that, if M is the product of the moduli, there is, in an interval of length M, exactly one integer having any given set of modular values.
In modular arithmetic, Barrett reduction is an algorithm designed to optimize the calculation of [1] without needing a fast division algorithm. It replaces divisions with multiplications, and can be used when is constant and <. It was introduced in 1986 by P.D. Barrett.
In the division of 43 by 5, we have: 43 = 8 × 5 + 3, so 3 is the least positive remainder. We also have that: 43 = 9 × 5 − 2, and −2 is the least absolute remainder. These definitions are also valid if d is negative, for example, in the division of 43 by −5, 43 = (−8) × (−5) + 3, and 3 is the least positive remainder, while,
Modular exponentiation is the remainder when an integer b (the base) is raised to the power e (the exponent), and divided by a positive integer m (the modulus); that is, c = b e mod m. From the definition of division, it follows that 0 ≤ c < m. For example, given b = 5, e = 3 and m = 13, dividing 5 3 = 125 by 13 leaves a remainder of c = 8.
Ad
related to: matlab modular division