enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of integrals of rational functions - Wikipedia

    en.wikipedia.org/wiki/List_of_integrals_of...

    The following is a list of integrals (antiderivative functions) of rational functions. Any rational function can be integrated by partial fraction decomposition of the function into a sum of functions of the form:

  3. Rational function - Wikipedia

    en.wikipedia.org/wiki/Rational_function

    There are several non equivalent definitions of the degree of a rational function. Most commonly, the degree of a rational function is the maximum of the degrees of its constituent polynomials P and Q, when the fraction is reduced to lowest terms. If the degree of f is d, then the equation =

  4. Fractional calculus - Wikipedia

    en.wikipedia.org/wiki/Fractional_calculus

    The corresponding derivative is calculated using Lagrange's rule for differential operators. To find the α th order derivative, the n th order derivative of the integral of order (n − α) is computed, where n is the smallest integer greater than α (that is, n = ⌈α⌉). The Riemann–Liouville fractional derivative and integral has ...

  5. Integrally closed domain - Wikipedia

    en.wikipedia.org/wiki/Integrally_closed_domain

    In particular, this means that any element of L integral over A is root of a monic polynomial in A[X] that is irreducible in K[X]. If A is a domain contained in a field K, we can consider the integral closure of A in K (i.e. the set of all elements of K that are integral over A). This integral closure is an integrally closed domain.

  6. Integration by reduction formulae - Wikipedia

    en.wikipedia.org/wiki/Integration_by_reduction...

    In integral calculus, integration by reduction formulae is a method relying on recurrence relations. It is used when an expression containing an integer parameter , usually in the form of powers of elementary functions, or products of transcendental functions and polynomials of arbitrary degree , can't be integrated directly.

  7. Fractional ideal - Wikipedia

    en.wikipedia.org/wiki/Fractional_ideal

    Let be an integral domain, and let = ⁡ be its field of fractions.. A fractional ideal of is an -submodule of such that there exists a non-zero such that .The element can be thought of as clearing out the denominators in , hence the name fractional ideal.

  8. Integral equation - Wikipedia

    en.wikipedia.org/wiki/Integral_equation

    Third kind: An integral equation is called an integral equation of the third kind if it is a linear Integral equation of the following form: [3] () + (,) = where g(t) vanishes at least once in the interval [a,b] [4] [5] or where g(t) vanishes at a finite number of points in (a,b).

  9. Field of fractions - Wikipedia

    en.wikipedia.org/wiki/Field_of_fractions

    The field of fractions of an integral domain is sometimes denoted by ⁡ or ⁡ (), and the construction is sometimes also called the fraction field, field of quotients, or quotient field of . All four are in common usage, but are not to be confused with the quotient of a ring by an ideal , which is a quite different concept.