enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euler–Rodrigues formula - Wikipedia

    en.wikipedia.org/wiki/Euler–Rodrigues_formula

    which is a quaternion of unit length (or versor) since ‖ ‖ = + + + = Most importantly, the above equations for composition of rotations are precisely the equations for multiplication of quaternions =. In other words, the group of unit quaternions with multiplication, modulo the negative sign, is isomorphic to the group of rotations with ...

  3. Rotation formalisms in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_formalisms_in...

    The Rodrigues vector (sometimes called the Gibbs vector, with coordinates called Rodrigues parameters) [3] [4] can be expressed in terms of the axis and angle of the rotation as follows: = ^ ⁡ This representation is a higher-dimensional analog of the gnomonic projection , mapping unit quaternions from a 3-sphere onto the 3-dimensional pure ...

  4. Quaternion - Wikipedia

    en.wikipedia.org/wiki/Quaternion

    In other words: A quaternion squares to −1 if and only if it is a vector quaternion with norm 1. By definition, the set of all such vectors forms the unit sphere. Only negative real quaternions have infinitely many square roots. All others have just two (or one in the case of 0). [citation needed] [d]

  5. Quaternions and spatial rotation - Wikipedia

    en.wikipedia.org/wiki/Quaternions_and_spatial...

    using the Hamilton product, where the vector part of the pure quaternion L(p ′) = (0, r x, r y, r z) is the new position vector of the point after the rotation. In a programmatic implementation, the conjugation is achieved by constructing a pure quaternion whose vector part is p, and then performing

  6. Rotation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Rotation_(mathematics)

    where q is the versor, q −1 is its inverse, and x is the vector treated as a quaternion with zero scalar part. The quaternion can be related to the rotation vector form of the axis angle rotation by the exponential map over the quaternions, = /, where v is the rotation vector treated as a quaternion.

  7. Conversion between quaternions and Euler angles - Wikipedia

    en.wikipedia.org/wiki/Conversion_between...

    This article explains how to convert between the two representations. Actually this simple use of "quaternions" was first presented by Euler some seventy years earlier than Hamilton to solve the problem of magic squares. For this reason the dynamics community commonly refers to quaternions in this application as "Euler parameters".

  8. Rodrigues' rotation formula - Wikipedia

    en.wikipedia.org/wiki/Rodrigues'_rotation_formula

    Vector geometry of Rodrigues' rotation formula, as well as the decomposition into parallel and perpendicular components. Let k be a unit vector defining a rotation axis, and let v be any vector to rotate about k by angle θ ( right hand rule , anticlockwise in the figure), producing the rotated vector v rot {\displaystyle \mathbb {v} _{\text ...

  9. Classical Hamiltonian quaternions - Wikipedia

    en.wikipedia.org/wiki/Classical_Hamiltonian...

    Vectors and scalars can be added. When a vector is added to a scalar, a completely different entity, a quaternion is created. A vector plus a scalar is always a quaternion even if the scalar is zero. If the scalar added to the vector is zero then the new quaternion produced is called a right quaternion. It has an angle characteristic of 90 degrees.