enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Speed of electricity - Wikipedia

    en.wikipedia.org/wiki/Speed_of_electricity

    Free electrons in a conductor follow a random path. Without the presence of an electric field, the electrons have no net velocity. When a DC voltage is applied, the electron drift velocity will increase in speed proportionally to the strength of the electric field. The drift velocity in a 2 mm diameter copper wire in 1 ampere current is ...

  3. Quantum wire - Wikipedia

    en.wikipedia.org/wiki/Quantum_wire

    One consequence of this quantization is that the classical formula for calculating the electrical resistance of a wire, R = ρ l A , {\displaystyle R=\rho {\frac {l}{A}},} is not valid for quantum wires (where ρ {\displaystyle \rho } is the material's resistivity , l {\displaystyle l} is the length, and A {\displaystyle A} is the cross ...

  4. Drude model - Wikipedia

    en.wikipedia.org/wiki/Drude_model

    The electrons arriving at location x from the higher-energy side will arrive with energies [()], while those from the lower-energy side will arrive with energies [(+)]. Here, v {\displaystyle v} is the average speed of electrons and τ {\displaystyle \tau } is the average time since the last collision.

  5. Electron mobility - Wikipedia

    en.wikipedia.org/wiki/Electron_mobility

    The two charge carriers, electrons and holes, will typically have different drift velocities for the same electric field. Quasi-ballistic transport is possible in solids if the electrons are accelerated across a very small distance (as small as the mean free path), or for a very short time (as short as the mean free time). In these cases, drift ...

  6. Quantum tunnelling - Wikipedia

    en.wikipedia.org/wiki/Quantum_tunnelling

    When this energy level is higher than that of the electrons, no tunnelling occurs and the diode is in reverse bias. Once the two voltage energies align, the electrons flow like an open wire. As the voltage further increases, tunnelling becomes improbable and the diode acts like a normal diode again before a second energy level becomes ...

  7. Electrical resistivity and conductivity - Wikipedia

    en.wikipedia.org/wiki/Electrical_resistivity_and...

    The position of the Fermi level with respect to the band structure is very important for electrical conduction: Only electrons in energy levels near or above the Fermi level are free to move within the broader material structure, since the electrons can easily jump among the partially occupied states in that region. In contrast, the low energy ...

  8. Electromigration - Wikipedia

    en.wikipedia.org/wiki/Electromigration

    Electromigration (red arrow) is due to the momentum transfer from the electrons moving in a wire. Electromigration is the transport of material caused by the gradual movement of the ions in a conductor due to the momentum transfer between conducting electrons and diffusing metal atoms.

  9. Surface-conduction electron-emitter display - Wikipedia

    en.wikipedia.org/wiki/Surface-conduction...

    Due to the nanoscopic size of the slits, the required field can correspond to a potential on the order of tens of volts. On the order of 3%, a few of the electrons impact with slit material on the far side and are scattered out of the emitter surface. A second field, applied externally, accelerates these scattered electrons towards the screen.