Search results
Results from the WOW.Com Content Network
The Reynolds number is the ratio of inertial forces to viscous forces within a fluid that is subjected to relative internal movement due to different fluid velocities. A region where these forces change behavior is known as a boundary layer, such as the bounding surface in the interior of a pipe.
The Reynolds and Womersley Numbers are also used to calculate the thicknesses of the boundary layers that can form from the fluid flow’s viscous effects. The Reynolds number is used to calculate the convective inertial boundary layer thickness that can form, and the Womersley number is used to calculate the transient inertial boundary thickness that can form.
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
The Reynolds number (Re) is a dimensionless quantity that is commonly used in fluid dynamics and engineering. [6] [7] Originally described by George Gabriel Stokes in 1850, it became popularized by Osborne Reynolds after whom the concept was named by Arnold Sommerfeld in 1908. [7] [8] [9] The Reynolds number is calculated as:
A vessel of diameter of 10 µm with a flow of 1 millimetre/second, viscosity of 0.02 poise for blood, density of 1 g/cm 3 and a heart rate of 2 Hz, will have a Reynolds number of 0.005 and a Womersley number of 0.0126. At these small Reynolds and Womersley numbers, the viscous effects of the fluid become predominant.
The Strouhal number depends on the Reynolds number, [5] but a value of 0.22 is commonly used. [6] As the unit is dimensionless, any set of units can be used for the variables. Over four orders of magnitude in Reynolds number, from 10 2 to 10 5 , the Strouhal number varies only between 0.18 and 0.22.
Accurate prescription of TKE as initial conditions in CFD simulations are important to accurately predict flows, especially in high Reynolds-number simulations. A smooth duct example is given below. k = 3 2 ( U I ) 2 , {\displaystyle k={\frac {3}{2}}(UI)^{2},} where I is the initial turbulence intensity [%] given below, and U is the initial ...
Reynolds’ 1883 experiment on fluid dynamics in pipes Reynolds’ 1883 observations of the nature of the flow in his experiments. In 1883 Osborne Reynolds demonstrated the transition to turbulent flow in a classic experiment in which he examined the behaviour of water flow under different flow rates using a small jet of dyed water introduced into the centre of flow in a larger pipe.