Search results
Results from the WOW.Com Content Network
Using the usual notations for a triangle (see the figure at the upper right), where a, b, c are the lengths of the three sides, A, B, C are the vertices opposite those three respective sides, α, β, γ are the corresponding angles at those vertices, s is the semiperimeter, that is, s = a + b + c / 2 , and r is the radius of the inscribed circle, the law of cotangents states that
In physics, there are equations in every field to relate physical quantities to each other and perform calculations. Entire handbooks of equations can only summarize most of the full subject, else are highly specialized within a certain field. Physics is derived of formulae only.
In geometry, the Conway triangle notation, named after John Horton Conway, allows trigonometric functions of a triangle to be managed algebraically. Given a reference triangle whose sides are a, b and c and whose corresponding internal angles are A, B, and C then the Conway triangle notation is simply represented as follows:
In trigonometry, the law of tangents or tangent rule [1] is a statement about the relationship between the tangents of two angles of a triangle and the lengths of the opposing sides. In Figure 1, a , b , and c are the lengths of the three sides of the triangle, and α , β , and γ are the angles opposite those three respective sides.
For example, Todhunter [1] gives two proofs of the cosine rule (Articles 37 and 60) and two proofs of the sine rule (Articles 40 and 42). The page on Spherical law of cosines gives four different proofs of the cosine rule. Text books on geodesy [2] and spherical astronomy [3] give different proofs and the online resources of MathWorld provide ...
Taking L to be the x-axis, the line integral between consecutive vertices (x i,y i) and (x i+1,y i+1) is given by the base times the mean height, namely (x i+1 − x i)(y i + y i+1)/2. The sign of the area is an overall indicator of the direction of traversal, with negative area indicating counterclockwise traversal.
≡ 1 ft 3 /min = 4.719 474 432 × 10 −4 m 3 /s: cubic foot per second ft 3 /s ≡ 1 ft 3 /s = 0.028 316 846 592 m 3 /s: cubic inch per minute in 3 /min ≡ 1 in 3 /min = 2.731 177 3 × 10 −7 m 3 /s cubic inch per second in 3 /s ≡ 1 in 3 /s = 1.638 7064 × 10 −5 m 3 /s: cubic metre per second (SI unit) m 3 /s ≡ 1 m 3 /s = 1 m 3 /s ...
In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.