Search results
Results from the WOW.Com Content Network
Sonar (sound navigation and ranging or sonic navigation and ranging) [2] is a technique that uses sound propagation (usually underwater, as in submarine navigation) to navigate, measure distances , communicate with or detect objects on or under the surface of the water, such as other vessels.
Sonar systems are generally used underwater for range finding and detection. Active sonar emits an acoustic signal, or pulse of sound, into the water. The sound bounces off the target object and returns an echo to the sonar transducer. Unlike active sonar, passive sonar does not emit its own signal, which is an advantage for military vessels.
The sonar modified for the test was an early version of SURTASS deployed in the MV Cory Chouest. [10] As a result of this test a "Committee on Low-Frequency Sound and Marine Mammals" was organized by the National Research Council. Their findings were published in 1994, in Low-Frequency Sound and Marine Mammals: Current Knowledge and Research ...
Output of a computer model of underwater acoustic propagation in a simplified ocean environment. A seafloor map produced by multibeam sonar. Underwater acoustics (also known as hydroacoustics) is the study of the propagation of sound in water and the interaction of the mechanical waves that constitute sound with the water, its contents and its boundaries.
The sonoluminescence effect was first discovered at the University of Cologne in 1934 as a result of work on sonar. [3] Hermann Frenzel and H. Schultes put an ultrasound transducer in a tank of photographic developer fluid.
Sonar (sound navigation and ranging) is a technique that uses sound propagation under water (or occasionally in air) to navigate, communicate or to detect other vessels. There are two kinds of sonar – active and passive. A single active sonar can localize in range and bearing as well as measuring radial speed.
The deep scattering layer, sometimes referred to as the sound scattering layer, is a layer in the ocean consisting of a variety of marine animals. It was discovered through the use of sonar , as ships found a layer that scattered the sound and was thus sometimes mistaken for the seabed .
Some species of hawkmoths (Sphingidae) produce ultrasound capable of sonar jamming. [25] Sonar jamming capability has evolved independently in at least six subfamilies. [26] Because sonar jamming seems to require high duty cycle ultrasound, it is believed to be a derived form of the simpler ultrasound used for aposematism and mimicry. [27]