Search results
Results from the WOW.Com Content Network
Niobium-1% zirconium is used in rocketry and in the nuclear industry. It is regarded as a low-strength alloy. [1] [2]C-103, which is 89% Nb, 10% Hf and 1% Ti, is used for the rocket nozzle of the Apollo service module and the Merlin vacuum [3] engines; it is regarded as a medium-strength alloy.
Niobium can be found in aircraft gas turbines, vacuum tubes and nuclear reactors. An alloy used for liquid rocket thruster nozzles, such as in the main engine of the Apollo Lunar Modules, is C103, which consists of 89% niobium, 10% hafnium and 1% titanium. [27] Another niobium alloy was used for the nozzle of the Apollo Service Module. As ...
Niobium was officially adopted as the name of the element in 1949, but the name columbium remains in current use in metallurgy in the United States. It was not until the early 20th century that niobium was first used commercially. Niobium is an important addition to high-strength low-alloy steels.
Very high thermal conductivity measurements up to 22,600 w m −1 K −1 were reported by Fenton, E.W., Rogers, J.S. and Woods, S.D. in reference 570 on page 1458, 41, 2026–33, 1963. The data is listed on pages 6 through 8 and graphed on page 1 where Fenton and company are on curves 63 and 64.
As quoted from various sources in an online version of: David R. Lide (ed), CRC Handbook of Chemistry and Physics, 84th Edition.CRC Press. Boca Raton, Florida, 2003; Section 12, Properties of Solids; Thermal and Physical Properties of Pure Metals / Thermal Conductivity of Crystalline Dielectrics / Thermal Conductivity of Metals and Semiconductors as a Function of Temperature
Charge carrier densities involve equations concerning the electrical conductivity, related phenomena like the thermal conductivity, ... Niobium: 1 5.56 × 10 22: Iron ...
The thermal conductivity of a material is a measure of its ability to conduct heat.It is commonly denoted by , , or and is measured in W·m −1 ·K −1.. Heat transfer occurs at a lower rate in materials of low thermal conductivity than in materials of high thermal conductivity.
As quoted in an online version of: David R. Lide (ed), CRC Handbook of Chemistry and Physics, 84th Edition.CRC Press. Boca Raton, Florida, 2003; Section 4, Properties of the Elements and Inorganic Compounds; Physical Properties of the Rare Earth Metals