Search results
Results from the WOW.Com Content Network
Circle packing has become an essential tool in origami design, as each appendage on an origami figure requires a circle of paper. [12] Robert J. Lang has used the mathematics of circle packing to develop computer programs that aid in the design of complex origami figures.
The hexagonal packing of circles on a 2-dimensional Euclidean plane. These problems are mathematically distinct from the ideas in the circle packing theorem.The related circle packing problem deals with packing circles, possibly of different sizes, on a surface, for instance the plane or a sphere.
Circle packing in a circle is a two-dimensional packing problem with the objective of packing unit circles into the smallest possible ... solutions for n = 2, 3, 4, 7
A circle packing for a five-vertex planar graph. The circle packing theorem (also known as the Koebe–Andreev–Thurston theorem) describes the possible tangency relations between circles in the plane whose interiors are disjoint. A circle packing is a connected collection of circles (in general, on any Riemann surface) whose interiors are ...
Consider a real number, and the relation .Then the upper contour set of would be the set of numbers that were greater than or equal to ,; the strict upper contour set of would be the set of numbers that were greater than ,
Gauss's circle problem asks how many points there are inside this circle of the form (,) where and are both integers. Since the equation of this circle is given in Cartesian coordinates by x 2 + y 2 = r 2 {\displaystyle x^{2}+y^{2}=r^{2}} , the question is equivalently asking how many pairs of integers m and n there are such that
Square packing in a circle is a related problem of packing n unit squares into a circle with radius as small as possible. For this problem, good solutions are known for n up to 35. Here are the minimum known solutions for up to n =12: [ 11 ] (Only the cases n=1 and n=2 are known to be optimal)
A circle of radius 23 drawn by the Bresenham algorithm. In computer graphics, the midpoint circle algorithm is an algorithm used to determine the points needed for rasterizing a circle. It is a generalization of Bresenham's line algorithm. The algorithm can be further generalized to conic sections. [1] [2] [3]